
 1

CC-NIE Integration: Bringing
Distributed High Throughput
Computing to the Network with Lark

1. Introduction
High Throughput Computing (HTC) is a computational research technique that focuses
on maximizing the science throughput for a set of computing resources, as opposed to
getting a task done in the shortest period of time. In the last decade, the focus of high
throughput computing has shifted from scavenging resources on the local campus to
Distributed High Throughput Computing (DHTC), where the campus researcher can
draw on resources from around the nation or globe. The local resources still serve as a
critical “home base” for the researcher, but the computational resources available can be
greatly increased. We like to think of this as “Submit Locally, Compute Globally.” As
DHTC often turns a computationally-bound problem to a data-bound problem, network
connectivity and sharing from the campus to the national cyber-infrastructure is critical.

Strong examples of DHTC include the Holland Computing Center (HCC) campus grid,
Purdue’s DiaGrid project [1], and the Open Science Grid (OSG) [2, 3]. One common
technological component underlying each example is the Condor software [4, 5]. Condor
serves both as a backbone batch scheduler for these infrastructures and as a platform for
research into DHTC.

An interesting aspect of Condor is that each pool of nodes does not need to exist
independently. A Condor scheduler can send jobs directly to either a local worker node or
to a worker node in a remote pool. This technique connects multiple campuses in DiaGrid
and the HCC Campus Cluster. The glideinWMS software [6], used by the OSG, has
allowed the Compact Muon Solenoid (CMS) [7, 8] experiment to construct a single
Condor overlay pool spanning dozens of clusters throughout the globe.

Despite these accomplishments, Condor is a consumer of the network infrastructure, and
does little integration and management of the network layer. Condor assists in sharing
computing resources, but not network resources. Scheduling decisions in Condor are
done without regard to the underlying network capacity. As a result, the OSG Council
stated that incorporating knowledge of the network layer into scheduling is a key DHTC
research challenge for the next five years [9]. The Worldwide LHC Computing Grid
Technical Evaluation Group (WLCG TEG) also recommends that WLCG become more
network aware [10].

For example, the Condor scheduler may match jobs with large input files to a remote
node with little bandwidth. GlideinWMS makes decisions about the number of CPU
resources to request from each site based on the number of jobs in the workflow. No
consideration is made in its planning as to whether the network can support the number
of jobs.

 2

In the “Any Data, Any Time, Anywhere” (AAA) project [11], jobs assigned to busy OSG
processing sites are selectively moved to sites with idle CPUs. We call this overflow.
Input data is handled by performing remote-I/O from the original site to the destination.
Currently, AAA will request overflow slots without regard to the network conditions.
Clearly, the incorporation of network scheduling capabilities will allow us to better
regulate based on network conditions.

Software-defined networking has become popular for managing large data flows between
two sites. Software-defined networking allows upper layers of software to manage
networking gear such as routers and switches directly, through standard protocols such as
OpenFlow [12]. To date, this network management has not made it to the HTC layer.
Most applications involving end-hosts utilize virtual machines, not OS-level processes
such as a batch job. Data intensive jobs have proven to be a challenge in terms of the
bandwidth they consume, and the complex network topologies they must navigate.
Smaller sites tend to put the computing resources behind a campus firewall, which
provides insufficient throughput to the wider world. Jobs running at remote sites typically
do not have the same level of access as those running inside the trusted network. The lack
of publically accessible IPv4 addresses means that jobs need to traverse a NAT
bottleneck to access external data servers.

For management capabilities, we demonstrated in 2011 that Condor could interact with
the recently added mechanisms in the Linux kernel to provide a per-job network device
[13]. We believe this prototype will provide a starting point to have Condor manage the
network layer, and keeps this proposal from being primarily about software development.
Lark will investigate the creation of a management layer for realizing a job’s stated
policy into an actual network topology. Work will be done to turn the prototype code into
a production-quality Condor feature, and we will demonstrate the implementation of
several job-policy-based network topologies. By enabling network topology
individualized at each compute job, finer-grained tradeoffs between performance and
security can be realized. For instance, firewalls only need to be bypassed by individual
jobs that demand high-bandwidth. We will conduct studies to determine the host-level
performance costs of this approach.

In addition to providing a network test bed for HTC networking technologies, Lark will
aim to provide network-aware scheduling for the Condor scheduler and the glideinWMS
system by integrating perfSONAR data [14]. The initial customer for the glideinWMS
improvements will be the AAA project, as a mechanism to regulate the amount of
resources requested for each site based on network status.

Both the network-aware scheduling and the Condor-managed networking will serve as
plumbing for future investigations along these lines, as they provide Condor with a new
“hook” to interact with the networking layer.

2. About the Collaboration
UW and UNL have a history of working together, and working in this area, which
suggest that, if funded, this proposal has a high likelihood of success. Both are part of the

 3

Open Science Grid (OSG). UW serves as the lead institution and Bockelman is the
Technology Area lead. Both sites are also CMS “Tier-2” computing sites. This grant
provides a medium-sized high-throughput computing cluster, requires high-speed
connectivity and participation in the perfSONAR network-monitoring infrastructure. The
AAA project, one of the initial beneficiaries of Lark, includes both UW and UNL. UNL
is the lead institution of AAA.

This small collaboration will be a satellite of the larger OSG collaboration. The OSG
represents a significant NSF investment in DHTC. By directly advancing OSG’s research
agenda, we believe Lark will have a broad impact on computational science.

Both collaborators have been working with advanced networking. The NSF, through the
STCI program, has funded the Condor project to implement IPv6 within the core Condor
daemons. This proposal would result in the first wide-scale, multi-site deployment of
Condor on IPv6. Routing jobs between sites will depend on the local campus
infrastructure’s existing programs to enable IPv6 connectivity. The campuses have a long
history in participating in research networking. Both campuses are participants in the
DYNES project [15], and UNL was one endpoint in the first public demonstration of the
DCN dynamic circuit networking technologies that predated DYNES. As this project will
involve end-to-end network circuits between sites, the existing partnership between the
Condor Project and HCC with their respective campus networking organizations will be
an essential ingredient to Lark. Accordingly, a portion of the UW effort will be fulfilled
by a campus network engineer involved with DYNES and intimately familiar with the
UW’s backbone configuration and WAN connectivity. At UNL, Attebury has worked
closely with the university networking team and is the site contact for DYNES.

Underpinning the technical execution of this project is the Condor technology. The
Condor project, with over 20 years of history guided by Miron Livny, is a recognized
leader in providing High Throughput Computing technologies. As the most senior staff
researcher and Technical Lead for the Condor project, Lark Co-PI Tannenbaum is the
right person to lead this effort on the UW side. He is responsible for Condor’s technical
architecture and implementation, and has considerable network experience including
formerly serving as Technology Editor for the monthly CMP Media publication Network
Computing. While UW is the home of the Condor project, Lark PI Bockelman has been a
very successful external contributor of new features in the last two years. Interaction with
the Condor team will be essential, as we will depend on their existing efforts to finish
Condor’s IPv6 support and the implementing of our scheduler improvements in order to
minimize any software development within Lark.

3. Summary of Project
We break the project deliverables into three subsections: deploying an advanced
networking test bed for HTC, network-aware scheduling, and software-defined networks.
The work in each area is outlined below.

 4

Advanced Networking Test-bed for HTC (Lark-ANT)
We propose incorporating test clusters at UNL and UW with the DYNES project’s
current networking test bed into an advanced networking test bed for HTC. The test
clusters, from the existing “Build and Test Lab” at UW [16] and “Bugeater” cluster at
UNL, will be connected to the DYNES network and be IPv6-enabled. They will be used
as a platform for developing the Lark software and as a staging ground before
improvements are deployed to the production clusters. The production clusters associated
with Lark will be the CMS Tier-2 at UNL (“Red”) [17] and the Center of High
Throughput Computing (CHTC) pool at UW [18]. Both clusters are more than 3,000
cores and will be able to demonstrate the networking ideas at scale. See Figure 1 for an
illustration of the anticipated UNL deployment.

These test beds will initially be connected using IPv6 to each campus’s DYNES switch.
It will be the first multi-site test of the Condor IPv6 implementation, and will allow us to
feed back issues to the Condor team and gain confidence to put IPv6 in production at the
Nebraska Tier-2. As Lark progress, the focus of the Lark-ANT pools will be testing the
network-aware scheduling and software-defined networks prior to deploying them. In
addition, our documented experiences and learned best practices could serve as a case
study for how to bring new networking technologies into production DHTC. Moving
forward, the HTC community may have to do this more frequently.

Network-aware scheduling (Lark-collect)
At each CMS site and a growing number of OSG sites, including UW and UNL, there is
a perfSONAR service that can perform bandwidth and latency tests with other
perfSONAR endpoints in the OSG. The results of these tests are stored in an internal
database and have well-defined APIs so they can be queried remotely for current and
historical test data. We propose to develop Lark-collect to locate the perfSONAR
instance associated with a given OSG site, query the current performance data, and feed it
into the Condor ecosystem.

 5

The initial use for this data will be to provide information to the Condor scheduler in an
“overlay pool.” An overlay pool is a Condor pool consisting of worker nodes from many
sites. The pool is presented as a homogeneous cluster to the user, but is actually very
heterogeneous in terms of the worker nodes. Some worker nodes may be local to the
scheduler, while some may be on a different continent. Lark-collect would upload the

Figure 1. A diagram of the proposed networking configuration at UNL. Technical details have
been removed for clarity. During the first year, DYNES and Bugeater will be isolated from the
production clusters. In the second year, we will make a transition so DYNES is the primary
switch to the campus border router, which will allow deployment of virtual circuits to production.

First Year Deployment

Internet2
and

DYNES

Bugeater
testbed
cluster

Campus border
router

DYNES Switch

HCC core
switch

Dynes FDT Server

Dynes IDC server

Other
HCC

clusters

Second Year Deployment

Internet2
and

DYNES

Bugeater
testbed
cluster

Campus border
router DYNES Switch HCC core

switch

Dynes FDT Server

Dynes IDC server

Other
HCC

clusters

 6

perfSONAR bandwidth and latency data from the associated site into the Condor
collector for each worker node in the system. One potential pitfall in this approach is
handling sites with individual resources scattered across a campus. Some nodes may be
behind slow NAT boxes while others may be in an unencumbered DMZ, for example. By
recording the data at the per-node level, we can improve the data collection in the future.
The scheduler, at the time of job submission, can peek at the job’s input sandbox (the set
of files used as job input) and determine the bandwidth necessary to transfer the sandbox
within a given timeframe. Similarly, at the time a job completes, the job description could
be updated with the size of the job’s output sandbox and a similar calculation could be
performed. The scheduler currently limits the number of concurrent transfers to and from
worker nodes, giving each transfer the same weight. We propose to expand the scheduler
to weigh the active transfers by bandwidth used and to reject matches if it believes it
cannot finish the transfer within a given timeframe. See Figure 2. This bandwidth
information can also be used to dynamically adjust the number of concurrently allowed
sandbox transfers, which is currently expressed to Condor as a static number configured
by the administrator.

On the OSG, an overlay pool is constructed by using the glideinWMS software. This
software runs a service, the frontend, responsible for requesting resources (batch slots, in
most cases) at each grid site. The frontend determines the requests based on the number
of queued jobs that could match a given site. Accordingly, it currently is able to request
many more batch slots than the current network bandwidth could support. Similar to what
we propose with the scheduler, we propose to expand the glideinWMS frontend to take
into account the network bandwidth available and necessary. This will provide a
network-aware regulation mechanism to prevent a user from requesting resources that he
will be unable to fully utilize.

The AAA project will assign CMS jobs to an OSG site that has free computational
resources, but not the correct CMS input dataset, if the input data can be streamed from
elsewhere using remote I/O. This overflow technique is useful to increase CPU utilization
in the face of non-optimal distribution of data, at the cost of some per-job efficiency and
WAN bandwidth. The AAA infrastructure will statically limit the number of overflow
jobs based on conservative estimates. As the limit is input manually, the limits are almost
never changed. AAA will also use the network-aware regulation mechanism as a way to
automate the overflow limits.

If the interaction with DYNES becomes sufficiently advanced, the next step beyond
regulation would be to have Lark reserve and manage bandwidth. If a workflow could be
run at a site, given enough WAN bandwidth, Lark could reserve sufficient bandwidth
prior to glideinWMS requesting the overflow resources. As the glideinWMS frontend is
in charge of planning in the glideinWMS ecosystem, it is the appropriate place to interact
with DYNES. To benefit AAA, we would need to know the source site for the remote I/O.
This means that DYNES interaction would depend on AAA improving estimates of the
likely data source, and therefore we propose to study how to integrate glideinWMS-based
regulation mechanisms with the AAA infrastructure towards the end of Year 2.

 7

Condor-Managed Networks (Lark-manage)
In the HTC ecosystem, projects such as the Condor standard universe [4] or Parrot [19]
can try to manage a job’s I/O or network connectivity. They do this by inserting a shim
between the operating system and the running job in order to capture I/O calls and
redirect them to a remote host. By using an interposition agent, they can achieve a wide
variety of policies, such as allowing transparent file system access to the submit host
from the worker node. Interposition agents have their downsides, however, including:

• Performance: The interposition is implemented in userspace, not in the kernel,
which typically results in an unacceptable performance hit for codes that are not
intensely CPU-bound.

• Reliability: The interposing agent must emulate the entirety of the complex Linux

Figure 2. A diagram of how Lark-collect could utilize perfSONAR data to help Condor make
scheduling decisions. Here, we diagram an overlay pool (consisting of the Condor components in
grey) composed of worker nodes from multiple sites, with differing bandwidth. Lark-collect
gathers perfSONAR data from each site and adds the information into the worker node’s entry in
the collector. When the scheduler matches a job to a host, it can decide whether or not to use that
match based on the size of the input files to be transferred from submit host to worker node and
the actual worker node.

Submit Host

OSG Site 1 OSG Site 2

perfSONAR perfSONAR

Worker Node Worker Node Worker Node Worker Node

Worker Node

Condor starter Condor starter

Condor Scheduler

Condor Collector

Lark-collect

Worker Node

Condor starter

Performance DataPerformance Data

Job
Submission

Performance Data

 8

kernel interface for any generic application, and come up short in many aspects.
• Security: The interposing agent often assumes the application is “friendly” and

that there would be no adverse impact if the agent makes mistakes or the
application bypasses it.

We propose a new approach: combining software-defined networking with the concept of
network namespaces in Linux. A network namespace defines the network devices with
which a set of processes (such as a batch system job, or a virtual machine) is able to
interact. Our proposed approach does not require a separate virtual machine with all the
image management, performance hits, and updates a virtual machine entails. Even better,
it allows us to configure the networking at a batch job level as opposed to a network or
host level. We have prototyped creating each batch job in a separate namespace, and then
adding a virtual Ethernet device [20, 21]. The virtual device is a pair of network
interfaces that act analogously to a Unix pipe. By making one end the only device
accessible to the job’s namespace and integrating the other end of the pipe with the host’s
networking, we can control the job’s network access. This prototype work only
demonstrated integrating this mechanism with Condor, but did not expose any policy.
Lark will help guide the mechanism into a Condor software release and, more
importantly, write the Lark-manage software to implement the network management
policy.

Part of the project will be to better determine the policies needed for an organization like
the OSG. At minimum we foresee the following:

• Network accounting: All of a job’s traffic must pass through a single interface.
Through the normal Linux routing mechanisms, we can provide for careful
accounting of all the network traffic the job generates. We can perform separate
accounting for different subsets – such as on campus traffic versus off campus –
according to policy.

• Prioritization and bandwidth limiting: Through a mechanism similar to network
accounting, we can perform QoS and bandwidth limitations at a network-level.

• Split-network pool: Based on the job’s description – or the policy of the
machine’s owner – we can segregate a set of jobs (e.g., those involving Health
Insurance Portability and Accountability Act (HIPAA) data [22]) from the
remainder of the pool by placing the network device on a separate Virtual Local
Area Network (VLAN). These jobs would be completely separated from all other
local network activity. In addition to protecting trusted jobs with sensitive data,
this could prevent untrusted jobs from interacting with core services or having a
separate set of policies for a large group of jobs.

• Network-level flocking: When a job is sent to a remote pool, we will have the
running job rejoin the source pool through joining a dynamically constructed
VLAN. This will allow the job to access local cluster resources despite running
off-campus. This will be a “capstone” project for Lark, as it will involve end-to-
end coordination with DYNES to setup the initial VLAN.

 9

The proposed interaction of the Condor scheduler and Lark-manage is illustrated in
Figure 3.

At UNL, the CMS-owned cluster plans to use the split-network pool to limit the
aggregate WAN bandwidth used by opportunistic jobs. Without Lark, we can only do this
by statically partitioning the cluster, an investment we are unwilling to make for
opportunistic jobs. This illustrates how Lark will fundamentally improve our ability to

Figure 3. A diagram of the mechanism used to manage a job’s network. We use a Linux feature
called “network namespaces” to isolate the job to a single network “pipe device.” This device and
its pair function in a manner analogous to a Unix pipes, allowing the job to communicate with the
outside world in a controlled manner. Lark-manage is responsible for configuring the external
pipe device to communicate with the external network. This management can be as simple as
configuring a per-job NAT so we can do network usage accounting or performing Layer-2
routing, placing the job on a separate VLAN from the rest of the host.

Worker Node

System Network Namespace

External Network

Job-Private Network Namespace

Physical Network
Device

192.168.0.1

Network Pipe
Device

10.0.0.1

Network Pipe
Device

10.0.0.1

User Process

Network Pipe

Lark-Manage:
Configuration,

Routing, Firewalls

Network
Calls

condor_starter

Illustration of Lark-manage interaction with Condor

 10

share resources in HTC.

PIVOT and NEURON Outreach
The PIVOT project at UNL provides small clusters to colleges in Nebraska as a means to
make available training in computational research. Having the physical hardware – even
though it comes from an otherwise-retired UNL cluster - gives the faculty a sense of
ownership and helps motivate the more important training aspects of the program. While
working with our initial PIVOT pilot sites, we found that the colleges’ staff generally did
not have the correct “frame of mind” for supporting research. Their background was in
throttling access to student dorms, not enabling sharing between researchers. There was
no concept of a “science DMZ” where researchers could collaborate without being
hindered by institutional firewalls.

The Nebraska University Regional Optical Network (NEURON) [23] provides an optical
network linking universities across the state. Together with PIVOT, it provides an
opportunity to deploy Lark technologies and improve research across the state of
Nebraska. We plan on connecting PIVOT clusters directly to the UNL data center,
implementing a fledgling “science DMZ”.

Beyond the science DMZ, we hope this will provide students (ideally undergraduates)
and staff the first taste of IPv6 networking and advanced networking by trying to deploy
network-level flocking to the PIVOT clusters. We believe that by attempting to push the
existing boundaries at these sites, we will help provide the first real-world IPv6 use cases
for their IT departments.

4. Project Work Plan
Metrics and Deliverables
We plan the following end-product deliverables for the Lark project. We believe these
concrete advances will move the DHTC field forward in incorporating the network layer:

• Condor flocking using IPv6 deployed, tested, and validated between UW and
UNL production pools.

• A sustainable ANT pool at each university, connected to the DYNES
infrastructure, for use with future networking projects.

• Integration perfSONAR monitoring into the glideinWMS frontend and Condor
scheduler layers. Deployment into the AAA and OSG infrastructure.

• A tested and validated hook for Condor to manage the job’s network environment,
based on the existing prototype software.

• Example network management policies for HTC jobs.
• A report to the OSG on what network management policies are achievable and

pragmatic based on the available technologies.
• Deploy a reasonable subset of Lark technologies to the clusters in the PIVOT

project.

We propose the following metrics for success, outside the completion of deliverables:

 11

• Number of PIVOT clusters integrated with the UNL data centers.
• Number of software projects integrated with Lark software.
• Number of production jobs run using Lark-manage for the network layer.
• Number of deploys of Lark-collect-enabled glideinWMS submit hosts.

Estimated Schedule
We break down the estimated schedule for the end products of this project below. We
approximate by six-month intervals, and have highlighted the items we believe each
member of the collaboration will contribute:

Months 1-6:

• Lark-ANT: Validate IPv6 routing between UNL and UW. Verify routing can be
managed by DYNES. (UNL, UW)

• Lark-ANT: Setup ANT pool at UNL. Validate the existing UW NMI pool for
ANT. (UNL staff, UW)

• Lark-collect: Study how to best collect/query data from perfSONAR repositories.
Start design of Lark-collect software. (UNL student)

• Lark-manage: Evaluate the Condor network accounting prototype. Determine
how to best integrate into Condor release. (UW staff)

• Lark-manage: Start design of Lark-manage software. (UNL student)

Months 7-12:

• Lark-ANT: Demonstrate IPv6-only functionality for flocking between sites. Feed
back to software issues to Condor project. (UW staff, UNL staff).

• Lark-ANT: Demonstrate DYNES can construct a usable VLAN between the
ANT pools. (UW staff, UNL staff & student)

• Lark-collect: Initial prototype of a data aggregator that can feed data into a
Condor collector from perfSONAR. (UNL student)

• Lark-collect: Work with Condor project to make sure scheduler extensions
necessary for estimate bandwidth requirements for stage-in and stage-out exist.
(UW staff)

• Lark-manage: Implement Lark-manage software. (UNL student)
• Lark-manage: Continue integration of Condor network “hooks” into the

development series. (UW staff)
• Outreach: Extend a VLAN from HCC out to 1 PIVOT cluster. Start planning for

IPv6 connectivity. (UNL staff)

Months 13-18:

• Lark-ANT: Convert UNL Condor pool to IPv6-only. Deploy mixed-mode
IPv4/IPv6 prototype on test bed. (UW staff, UNL staff)

• Lark-collect: Have the Condor scheduler take advantage of the bandwidth
requirements and availability data. Study what scheduling policies are beneficial
(UNL student)

 12

• Lark-collect: Improve glideinWMS resource planning mechanisms to utilize the
perfSONAR data stored in the Condor collector. (UNL student)

• Lark-manage: Implement split-pool use case. (UNL student)
• Additionally, staff at UNL and UW will support UNL students working on the

collect and manage projects.

Months 18-24:

• Lark-ANT: Deploy mixed-mode support to UNL and UW production clusters.
For long-term maintenance, convert the UNL ANT pool to a special subset of the
production cluster rather than a standalone cluster. (UW staff, UNL staff)

• Lark-collect: Integrate glideinWMS-based regulation mechanism with the AAA
infrastructure. (UNL student)

• Lark-manage: Implement the network-level flocking policy. (UNL student)
• Staff at UNL and UW will support UNL students working on the collect and

manage projects.
• Reports on the usefulness of network-aware scheduling and management to the

OSG-ET.
• Outreach: Demonstrate network-level flocking to a PIVOT cluster. Assist

students working at a PIVOT-participating university to deploy IPv6 connectivity.
Extend a VLAN to two PIVOT clusters. (UNL staff)

 13

References

1. DiaGrid, http://www.dia-grid.org/

2. Altunay M, Bockelman B, and Pordes R, “Open Science Grid”, available from
http://osg-docdb.opensciencegrid.org/cgi-bin/ShowDocument?docid=800

3. Open Science Grid, http://opensciencegrid.org

4. Thain D, Tannenbaum T, and Livny M, “Distributed Computing in Practice: The
Condor Experience”, Concurrency and Computation: Practice and Experience, Vol. 17,
No. 2-4, pages 323-356, February-April, 2005.

5. Litzkow M, Livny M, and Mutka M, “Condor - A Hunter of Idle
Workstations”, Proceedings of the 8th International Conference of Distributed
Computing Systems, pages 104-111, June, 1988.

6. Sfiligoi I, Bradley D C, Holzman B, Mhashilkar P, Padhi S and Würthwein F “The
Pilot Way to Grid Resources Using glideinWMS”, 2009 WRI World Congress on
Computer Science and Information Engineering, vol.2, pp.428-432.
doi:10.1109/CSIE.2009.95

7. CMS web site: http://cms.web.cern.ch/

8. The CMS Collaboration, “The CMS experiment at the CERN LHC” . Journal of
Instrumentation 3 (08): S08004. doi:10.1088/1748-0221/3/08/S08004

9. OSG Council, “Computer Science Research needed for OSG to be successful in 2020”
http://osg-docdb.opensciencegrid.org/cgi-bin/ShowDocument?docid=1106

10. WLCG TEG OPS Face to Face Meeting, Jan 23 2012, Nikhef, Amsterdam,
http://indico.cern.ch/conferenceDisplay.py?confId=161833

11. Bloom K, “Any Data, Any time, Anywhere”, 2011. Available at http://osg-
docdb.opensciencegrid.org/cgi-bin/ShowDocument?docid=1025

12. Open Networking Foundation, https://www.opennetworking.org/

13. Bockelman B, “Improved Site Accounting”, 2011. Available at http://osg-
docdb.opensciencegrid.org/cgi-bin/ShowDocument?docid=1083

14. PerfSONAR, http://www.perfsonar.net/download.html

15. DYNES, http://www.internet2.edu/ion/dynes.html

16. BaTLab web site: https://www.batlab.org/

17. http://hcc.unl.edu/red/index.php

 14

18. CHTC web site: http://www.chtc.cs.wisc.edu/

19. Thain D, and Livny M, “Parrot: Transparent User-Level Middleware for Data-
Intensive Computing”, Scalable Computing: Practice and Experience, Volume 6,
Number 3, Pages 9-18, 2005.

20. http://osgtech.blogspot.com/2011/09/per-batch-job-network-statistics.html

21. https://github.com/bbockelm/condor-network-accounting

22. HIPAA web site: http://www.hhs.gov/ocr/privacy/

23. https://epscor.nebraska.edu/grants/project_nsf_c2.shtml

