
Scheduling Policy for Institution “A”

This institution operates a large compute cluster supporting many different types of users, and thus has

complex scheduling needs. This document outlines the requirements for scheduling jobs to be run on

this pool.

They run one pool with many submit points, the number of execute cores is the sum of the desired slots

per job type in the table below. The various execute machines are not identical, but for scheduling

reasons, today they are considered identical, with the unit of scheduling being the core. In the future,

they would like to schedule multi core jobs, again with the unit of scheduling being the core. They

would also like to be able to schedule jobs with varying amounts of requested memory, and bias the

accounting accordingly, but aren’t sure yet how they would like this to work.

The overall goal is to have some notion of fairness of job startup waiting time between the various types

of jobs. To implement this, given enough demand from each of these types of jobs, they would like to

see the following number of cores running:

Type # cores Preemption
(in hours)

Large Group 8500 (hard limit even if idle machines)
Test Group 1 200 same as above
Test Group 2 20 same as above
Total jobs in parent
group “A” (both long
and short)

At most 2000 (hard limit even if idle
machines)

Long running child
subgroup of “A”

1000 (but if < 1000 short jobs, up to 2000
– sum of short + long should = 2000)

4 * 24

Short running child
subgroup of “A”

1000 (but if < 1000 long jobs, up to 2000 –
sum of short + long should = 2000)

4

External jobs At least 40, but as many as idle machines . 2

Note that this is a flat hierarchy of groups, with the exception of parent group “A”, which has two

subgroups, one assigned to long running jobs, and another to short running jobs. Usually, there is

sufficient demand of both long and short running jobs. However, occasionally, the demand for short

jobs may go to zero. In this case, it is expected that all 2000 parent group “A” slots will start running

“long” jobs, but there is a desire to preempt some number of these (100?) when the demand for short

jobs comes back online.

Note these are absolute numbers, not ratios. If there are fewer machines, they would like the same

proportion of job mix running. If there are additional machines that somehow show up in the pool, they

would like all the extra machines to run External Jobs, because all the other jobs access shared resources

which they don’t want to overload.

When they ask for multi core jobs, they are willing to “pay” by waiting longer for those jobs to match to

machines.

If there are idle machines, they would like them to be used by External jobs when there is enough

demand. But, they would like the ability to easily change these numbers from time to time. In general,

demand for slots is pretty constant, but the mix between long and short jobs within parent group “A” is

very dynamic.

External jobs are preempted after 2 hours for fairness. Generally, preemption is only used to limit run

away jobs, and is set very high, with the assumption that the site knows the maximum legal runtime for

a job, and anything over that runtime is an error, either in the job or on the machine.

Because of External jobs, they are willing to wait about 2 hours for the pool policy to be “unfair” and out

of balance before External jobs should be preempted for fairness.

