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Abstract

The ability to securely run arbitrary untrusted code on
a wide variety of execution platforms is a challenging
problem in the Grid community. One way to achieve
this is to run the code inside a contained, isolated en-
vironment, namely a “sandbox”. Virtual machines pro-
vide a natural solution to the security and resource man-
agement issues that arise in sandboxing. We explore dif-
ferent designs for the VM-enabled sandbox and evaluate
them with respect to various factors like structure, secu-
rity guarantees, user convenience, feasibility and over-
heads in one such grid environment. Our experiments
indicate that the use of on-demand VMs imposes a con-
stant startup overhead, with I/O-intensive applications
incurring additional overheads depending on the design
of the sandbox.

1 Introduction
Security vulnerabilities in grids have been the fo-
cus of a lot of attention in recent years. Butt et
al. [4] discuss the inadequacy of traditional safety
checks, while Miller et al. [13] emphasize the sus-
ceptibility of current grid systems by demonstrat-
ing a security exploit on a grid using dynamic code
instrumentation techniques. Though such specific
problems can be tackled, they indicate the dangers
of grid applications leaving contaminating resid-
ual state. Further, common attacks such as root ex-
ploits and stack smashing can always bring down
a machine and are a major worry for widely-used
grid environments like Condor [8].

To address these concerns, a grid computing sys-
tem must enable the execution of untrusted, unver-
ified applications within a secure, isolated environ-
ment, namely a “sandbox”. Essentially, the impact
of the running application must be restricted to the
sandbox, thereby protecting the underlying host
machine. Depending on the application’s require-
ments, access to resources on the host machine can
be selectively allowed from within the sandbox.
Moreover, while security attacks and faults can oc-
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cur within the sandbox, its framework must guar-
antee that these vulnerabilities do not affect the un-
derlying execute machine.

In this paper, we explore the use of Virtual Ma-
chine (VM) technology to implement sandboxes.
VMs present the image of a dedicated raw machine
to the grid application. An application running on
a VM is decoupled from the system software of the
underlying host machine. This ensures that an un-
trusted user or application can only compromise
the VM and not the underlying physical resource.
VMs also enable fine-grained resource allocation
for grid jobs. It is hence feasible to restrict the
memory, network, disk size, and even the CPU cy-
cles allocated to a given VM. Furthermore, the use
of VMs allows the target execution environment
for a grid application to be completely customized,
thereby enabling support for jobs with special re-
quirements like root access or legacy dependencies.
VMs also enable process migration without requir-
ing any modification or relinking of the grid appli-
cation.

As a result, considerable attention has been fo-
cused on the idea of integrating VMs into the grid
architecture [5, 9, 11, 19]. However, the notion of
the “sandbox” that these VMs are used to create is
not uniformly defined, particularly with respect to
its structure. A sandbox is defined both by what
it contains and where its boundaries are. VMs of-
fer the flexibility to implement different sandbox
designs and in this paper, we attempt to explore
and evaluate various implementations of the VM-
based sandbox along factors such as structure, se-
curity guarantees, feasibility, user convenience and
performance overheads.

Here we present four different sandbox designs,
ranging from a simple substitution of a grid node
with a virtual node all the way up to on-demand
VMs that use lazy file-retrieval techniques. The
choice of sandbox design, as we emphasize in this
effort, is workload dependent and our aim is to
give a clear understanding of the pros and cons of
each solution. We chose to implement our sand-
boxes on Condor [12], a large, distributed grid en-
vironment that is currently deployed across the
globe more than 1700 Condor pools, representing



over 60,000 computers. Our sandboxes are de-
ployed using Xen [3] as the virtual machine mon-
itor, which in contrast to other virtual machine
monitors that support full virtualization, has been
proven to have near-native Linux performance
with very low overheads.

2 Current Approaches
VMs are not the only solutions to the problem of
sandboxing. Simpler abstractions such as chroot()
have been used for the same purpose. However,
such sandboxes are limited as they can isolate only
the filesystem parts, and further, simple exploits
for breaking chroot() are well-known [7]. Program-
ming language virtual machines such as the Java
Virtual Machine support similar goals of sandbox-
ing and portability. However they severely restrict
the range of applications that can run on them. Jails
[10] and Pods [14] are other abstractions that could
provide sandboxing. The jail mechanism is com-
mon in the FreeBSD world, and is a stronger vari-
ant of chroot() sandboxes. Jails, however, do not
provide much support for other desirable proper-
ties such as migration. Pea-pods [15], an extension
of Pods, support migration although this migration
is restricted to different versions of the same kernel.
While adapting such mechanisms for the grid en-
vironment could open up interesting research av-
enues, we choose to work with VMs owing to the
several benefits they provide along with the flexi-
bility they offer for different sandboxing solutions.

The idea of integrating VMs with grids was ini-
tially popularized by Figueriredo et al.[9], whose
observations subsequently led to the INVIGO
project[1]. However, the INVIGO system addresses
higher level issues such as service discovery and
composition, paying relatively lesser attention to
lower-level issues like security and isolation. Fur-
ther, INVIGO uses a VM monitor that supports full
virtualization, while we use a paravirtualized mon-
itor which would incur much lesser overheads. En-
tropia [5] and SETI@Home[16] address the issue of
sandboxing using binary rewriting solutions that
only support custom-developed grid applications;
thus they restrict the range of applications that can
run on their grid.

3 Design and Implementation
3.1 Sandbox 1: Virtual grid nodes

This is the simplest sandbox in terms of design and
implementation. A virtual machine joins the grid
just like any other physical machine. It serves as a
substitute for the underlying physical machine in
the grid.

Even this simple design however offers most of
the benefits of VM technology, as summarized by

Table 1. For instance, a node can be easily con-
figured to control resource allocation for the grid
applications, restricting their use of main mem-
ory, disk usage, swap space and CPU cycles. Fur-
ther, since all resources are virtualized on this node,
its configuration can be different from that on the
physical node; for example, the network card on
the VM could be restricted by firewall policies that
are entirely different from that on the physical ma-
chine. Virtual nodes also provide isolation from the
other applications that are running on the physical
machine. Isolation can prevent attacks from resid-
ual processes of a grid job that could have run pre-
viously, in addition to preventing security attacks
and faults from spreading over to the physical ma-
chine.

In our implementation, we replace the execute
machine that Condor sees with a Xen VM. The VM
has network access and is typically assumed to be
running in the background on the execute machine
during normal operation. Condor is installed only
on the VM and not on the underlying physical ma-
chine. This ensures that jobs run only inside the
VM and are never directly executed on the phys-
ical machine. The only drawback of this design is
that the application is still open to the network, and
can hence launch network attacks on any accessible
system.

3.2 Sandbox 2: Eager prefetching,
whole-file-caching sandboxes

In this design, VMs act as individual job containers
with no network access. To guarantee correctness
while disallowing network access, the VM must
contain all job requirements within the sandbox be-
fore the job begins execution. It does this by eagerly
fetching all the data files needed by the job prior to
execute time. All I/O requests made by the job at
run time will hence be satisfied locally within the
sandbox.

This design uses VMs as ad-hoc entities that ex-
ist only for the duration of the job. While this in-
curs the overheads of starting and shutting down
a virtual machine for each run of a grid job, on
the flip side, system resources are consumed only
for the job duration. This solution also allows the
flexibility of launching a VM with a pre-configured
environment that matches the job’s requirements,
although since job dependencies have to be identi-
fied by the user beforehand, there is a downside
on user convenience. However, for applications
with well-defined I/O behavior, this design pro-
vides the tightest guarantees of sandboxing.

3.3 Sandbox 3: Lazy, block-caching
sandboxes

In this design, the boundary of the sandbox is ex-
tended to include the original machine from which



the job was submitted, i.e. the “submit machine”.
System calls are trapped and executed remotely at
the submit machine; only the results are transferred
back to the execute machine. This avoids any li-
brary or software compatibility issues as the appli-
cations are not tied to the software configuration of
the underlying physical system.

This solution will be particularly useful when an
application has huge input file dependencies but
makes few I/O calls. As before, VMs are launched
on-demand. User convenience is enhanced since
the user need no longer specify job dependen-
cies. However, since the VM is configured with
restricted network access, limited network attacks
are still possible. The security guarantees provided
by this sandbox are hence not as tight as those pro-
vided by Sandbox 2. Sandbox 4 hence attempts to
minimize this tradeoff and bring about the best of
both worlds.

3.4 Sandbox 4: Lazy prefetching,
whole-file caching sandboxes

This design is very similar to our second sandbox
design with the main difference being that the deci-
sion to prefetch the files required by the job is done
dynamically at job run time rather than statically
prior to the execution of the job. Hence, this sand-
box only transfers entire files when it sees that a file
being opened exists on the submit machine. How-
ever, in order to transfer data over the network, we
need to open up network access to the sandbox,
which in turn creates an opportunity for the job to
attack/be attacked on the network. Hence, to pre-
vent network attacks in this scenario, the sandbox
must suspend the executing job for the time period
during which the network is opened.

Our implementation uses Chirp [17], a
lightweight system for performing file I/O
over a network. Chirp allows file access to be
set up with fine-grained control so that user
permissions are not violated. Another component
of this implementation is Bypass, an application
that is used to create interposition agents and split
execution systems. This implementation launches
a VM that has no network access. All open system
calls from the Condor job are interposed. An
open call that requests I/O on the network, forces
the job to be suspended and a restricted network
connection to be opened up. The requested file
is then copied to the local machine. Network
access is then disabled, and the request proceeds
normally. A log maintains new changes to the
directory structure, which are merged onto the
submit machine after the job completes.

User convenience and flexibility in this scenario
are achieved because the user does not have to
specify any dependencies for the job. Hence this

solution servers as a tradeoff between between de-
signs 2 and 3, offering the tighter security guaran-
tees of sandbox 2 while maintaining the degree of
user convenience offered by sandbox 3.

3.5 Suspend/Resume
For all the on-demand VM solutions, it is also pos-
sible to preserve process state when the Condor
job needs to be vacated from the execute machine.
Under normal conditions, Condor jobs are vacated
from an execute machine once the machine detects
keyboard activity and ceases to be idle. However,
since jobs are now running inside a VM, it is pos-
sible to suspend and resume the VM on a differ-
ent machine rather than lose the progress made by
the job by restarting it on another machine. This
mechanism, already supported by the virtual ma-
chine monitor, helps preserve job state across dif-
ferent machines.

To implement this functionality, the wrapper
application sets up a signal handler to trap the
SIGTERM signal, which is the signal sent by the
Condor daemon when it wants to vacate a job. The
wrapper then suspends the VM state to a restore
file on receipt of this signal, and subsequently ex-
its. Condors file transfer mechanisms are set up
to transfer all files written by the job on eviction
or exit from the execute machine. Hence, the next
time the job is scheduled to run on a (possibly dif-
ferent) machine, the wrapper checks for the pres-
ence of the restore file, and if present, resumes the
VM rather than booting it up again. The Condor
job continues seamlessly from the point of eviction.

4 Evaluation
We characterize the different sandbox designs with
respect to factors such as security guarantees, ap-
plication functionality and user convenience in Ta-
ble 1. For our experiments, we have chosen to fo-
cus on data-centric micro-benchmarks, since appli-
cations of this category form a major share of grid
workloads [2, 18].

Further, in a virtualized environment like
Xen, data-intensive workloads entail a signifi-
cant CPU overhead [6] and are hence likely to
be most affected by our sandboxing techniques.
Computation-intensive workloads on the other
hand, on account of their minimal interaction with
the OS, tend to perform competitively with negli-
gible overhead on the Xen VMM [3]. Data-centric
workloads could vary in their characteristics - in
the number of files accessed, amount of data trans-
ferred as well as the burstiness of I/O rates [18].
We present the results of the experiments that high-
lights the performance overheads and scalability of



Feature
Condor
Vanilla
Universe 1

Condor
Standard
Universe 1

Sandbox 1 Sandbox 2 Sandbox 3 Sandbox 4

Security Guarantees
Protecting execute
machine from mali-
cious/faulty job

No No Yes Yes Yes Yes

Preventing network at-
tacks by a malicious job No No No Yes Limited Yes

Protecting against lurker
processes (one Condor
job attacking another)

No No No Yes Yes Yes

Application Functionality
Customizing job ex-
ecution environment
(Libraries, Packages, etc)

Limited Limited Limited Yes Yes Yes

Running jobs with net-
work requirements Yes Yes Yes No Limited No

Running jobs which re-
quire higher privileges
(e.g. root access)

No No Yes Yes Yes Yes

Running jobs which re-
quire a different OS than
the one on the execute
machine

No No Yes Yes Yes Yes

Reflects all writes made
by the job No Yes

Only in
Standard
Universe

No Yes Yes

Administrator and End-user Usability
Controlling resource al-
location (CPU, memory,
disk) on execute machine

Limited Limited Yes Yes Yes Yes

Job Migration No Yes
Only in
Standard
Universe

Yes Yes Yes

Requires user to specify
job requirements Yes No

Only in
Vanilla
Universe

Yes No No

Table 1: Comparison of the four sandboxes with respect to various metrics

the different designs below.

4.1 Platform
To implement our sandboxes, we used Xen 2.0 on
Linux 2.6.9 kernels which run Condor 6.7.6. Con-
dor [12] is a large, distributed grid environment
that is currently deployed across the globe more
than 1700 Condor pools, representing over 60,000
computers. All our experiments were performed
on Dell workstations: 2.6GHz Xeon processors,
each using a 120GB Seagate IDE hard disk (7200-
RPM, 8.5 ms avg seek time). While a few of the
experiments were conducted using the virtual net-
work provided by Xen, in order to take real net-
work overheads into account, we conducted cer-
tain experiments over a Gigabit ethernet. The VMs
were configured with 128 MB memory and 2GB
(virtual) hard disk capacity.

1 Condor allows two types of jobs, “standard” and “vanilla”.
Standard jobs can be checkpointed and migrated from system
to system transparently by Condor without restarting. How-
ever, for a code to be submitted as a standard job it must be re-
compiled using various Condor-specific compiler options and
libraries.

4.2 Experiment 1: A comparison of the
four sandboxes

In this experiment, we ran jobs performing 40 mil-
lion random I/O calls over a physical network,
on each of the sandbox designs. Figure 1 shows
that Sandbox 1 performs equivalently with Sand-
box 2 when jobs are submitted over the network.
The worst performing sandbox is Sandbox 3, on
account of all 40 million calls being issued re-
motely. The additional run time overhead incurred
by Sandbox 4 is on account of the network trans-
fer delay for the input file. Queuing delays are the
highest for Sandbox 3 on account of its implemen-
tation requiring three job submissions. For the re-
maining experiments, we focus our comparison on
jobs running on Condor Standard Universe, Sand-
box 3 and Sandbox 4 since it is only in these en-
vironments that the job runtime involves network
transfer overheads that are comparably affected by
the amount of I/O performed by the job. In Condor
Vanilla Universe, Sandbox 1 and Sandbox2, all the
files required by the job are transferred prior to job
execution and all I/O is performed locally; job run-
times in these environments are hence not affected



Figure 1: Experiment 1. A comparison of execution
times of jobs on the different sandboxes. Condor Vanilla
and Condor Standard are the base Condor environments
without sandboxing.

materially by variations in I/O patterns.

4.3 Experiment 2: Varying the input file
size

In this experiment, we vary the size of the input
file required by a job and demonstrate the effects.
Each experiment issues 10,000 reads on an input
file the size of which has been varied from 4K to
256M. All reads are random reads, so prefetch-
ing and caching effects are factored out. Sandbox
3 and Standard universe jobs transfer all I/O re-
quests over the network. Network overheads are a
little higher in Sandbox 3 due to virtualization ef-
fects and our measures to guarantee security. Fig-
ure 2 shows that both Sandbox 3 and Standard uni-
verse jobs follow similar trends. While there is a
fixed cost on Sandbox 3 jobs, Sandbox 4 transfers
the files during run time. The above graph shows
that Sandbox 4 can be a really useful option for I/O
intensive jobs. The huge hit in the run time for a
256 MB file is on account of thrashing effects as our
VM memory size was limited to 128 MB. The first
two sandbox designs are not included in this com-
parison because the job runtime will not factor in
the transfer time for the file.

4.4 Experiment 3: Varying the number
of input files

In this experiment, we vary the number of input
files required by a job. On every file, we issue
10,000 random read calls. The size of each file was
4 MB. Figure 3 shows that sandbox 3 and the stan-
dard universe scale smoothly since they only trans-
fer individual I/O requests instead of entire files.

Figure 2: Experiment 2. The effect of input file size on
run times.

Figure 3: Experiment 3. Run time vs Number of files
accessed.

Sandbox 4 however scales a lot more steeply, since
it fetches whole files from the submit machine on
each open call. Sandbox 3 hence favors scenarios
which involve a lot of input files with relatively
fewer I/O operations.

4.5 Overheads of Suspend/Resume
Our implementation of process migration for ad-
hoc VM-based sandboxes was built using Xen’s
suspend/resume capabilities. In our experiments,
on average it took 5 seconds for a Xen VM config-
ured with 128 MB of RAM to suspend and about
7 seconds for the same VM to be restored. For
this configuration, the size of the suspend file cre-
ated by Xen and transferred by Condor was 92
MB, which took on average 15 seconds to transfer
over the network. VM disk images were cached
on the execute machine and hence only the sus-



pend file was transferred across the network. These
figures remain static across multiple workloads; a
short-lived job running inside the VM will take the
same amount of delay to suspend as compared to
a long-running application with several pending
I/O requests. In general, whenever process mi-
gration is possible using mechanisms such as Con-
dor’s checkpointing for its Standard Universe jobs,
it should be preferred over VM migration since VM
migration is a more heavy weight operation. How-
ever, this provides a useful alternative for applica-
tions that cannot otherwise be checkpointed.

5 Conclusions
Virtual machines prove to be a natural platform for
sandboxing in grids, offering a host of benefits like
fine-grained resource control and allocation, fault
isolation, customized execution environments, and
support for process migration among others. The
downside of using virtual machines for this pur-
pose is the performance overhead characterized by
our experiments. However, given that applications
submitted to run in a grid environment like Con-
dor must tolerate delays on the order of several
minutes, we believe that these overheads should be
acceptable by users who desire the benefits of this
approach.

Table 1 highlights and contrasts the features of
the different sandbox designs. As indicated, each
design offers different levels of security and user
convenience. One interesting challenge is the abil-
ity to support jobs requiring legitimate network ac-
cess in a sandbox, while protecting all the hosts on
the network. Although we have explored four dif-
ferent styles of sandboxes in this effort, VMs offer
very flexible solutions to the problem of sandbox-
ing and hence there are other possible designs that
may suit different grid environments. Among our
chosen implementations, Sandbox 4 offers the most
in terms of flexibility but takes a hit in performance
if the workload is I/O intensive. As a limited yet
simple solution to sandboxing, Sandbox 1 offers an
easy alternative as well.

In the future, we expect to see virtual machines
as first class objects integrated into core grid archi-
tectures for purposes of sandboxing.
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