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Abstract 

Firewalls/NATs have brought significant 
connectivity problems along with their benefits, 
causing many applications to break or become 
inefficient. Due to its bi-directional communication, 
huge scale, and multi-organizational nature, the Grid 
may be one of the areas damaged most by the 
connectivity problem. Several ideas to deal with the 
connectivity problem were investigated and many 
systems are available. However, many issues still 
remain unanswered. Most systems are firewall/NAT 
unfriendly and are considered harmful to network 
security; the tussle between these devices trying to 
investigate payloads and applications trying to protect 
their content from observation and modification must 
be reconciled. This paper discusses how a simple 
relay-based system, called XRAY (middleboX traversal 
by RelAYing), deals with these issues and provides 
other benefits such as flexible traffic control. This 
paper also discusses how relay-based traversal 
systems can help applications to communicate over 
firewalls/NATs and also complement firewall/NAT 
operations to help network security.  

1. Introduction 

Firewalls and NATs [1] (collectively called 
middleboxes1 in this paper) provide many benefits such 
as easy address planning, network protection, and a 
solution to the IPv4 address shortage. However, these 
devices come at a price, notably non-universal 
connectivity of the Internet. In general, two endpoints 
separated by one or more middleboxes cannot 
communicate with each other. The Internet has become 
asymmetric because most middleboxes allow outbound 
(to the world) but block inbound (from the world) 

                                                

 

1 Though IETF uses "middleboxes" to refer to more 
than just NATs and firewalls [13], it currently focuses 
on those two devices. 

communications. Due to this connectivity problem, 
many applications break or become inefficient. The 
Grid [2] may be one of the most damaged areas 
because it generally requires bi-directional and many-
to-many connectivity among geographically distributed 
organizations. Client-server applications can get 
around the asymmetry problem by placing servers in 
publicly accessible places such as a DMZ. This 
approach does not work for the Grid because a node 
may act both as a client and a server. In grids, the 
connectivity problem generally results in the waste of 
resources because researchers may not harness 
resources separated from their networks by 
middleboxes. Computing jobs cannot be staged from 
the public network into a network behind a middlebox, 
and vice versa [4] [5]; data placement cannot be 
completed because data cannot move into or out of a 
network behind a middlebox. 

Middleware approaches are very attractive for 
dealing with the connectivity problem. They are easy 
to deploy because neither the Internet nor operating 
systems need be changed, and many applications can 
benefit from them. Especially middleware providing 
APIs similar to the Berkeley socket API is desirable for 
easy deployment because it is well understood and is 
used by many network applications. Many middleware 
traversal mechanisms were studied or are under 
investigation for dealing with the connectivity problem. 
However, we still have many problems and issues left 
unanswered: 

 

Middlebox friendly? Some traversal systems, 
often ironically called firewall-friendly [17], have 

adverse effects to network security. Some systems, 
notably in P2P file sharing systems, disguise their 
traffic to deceive middleboxes (or administrators). 
Other systems such as GCB [10], STUN [11], and 
TURN [12] exploit common middlebox behavior or 
configuration to the extent that network 
administrators never intended. For this reason, 
network administrators generally consider middlebox 
traversal systems to harm network security and are 
reluctant to deploy them. Systems such as DPF [10], 



SOCKS [14], and RSIP [15] have little or no adverse 
effect on network security. However, these systems 
suffer from similar problems because they do not 
describe how their traversal mechanisms fit in with 
network security enforcement. 

 
Asymmetry. Most middleboxes are configured to 
allow outbound connections while blocking inbound 
ones. Using this common practice, previous systems 
assume that outbound connections are allowed and 
help applications only with inbound connections. 
More and more organizations want to control 
communications in both directions for reasons such 
as security and legal issues. To support such 
restrictive organizations, a traversal mechanism must 
help both inbound and outbound connections in a 
controlled manner. 

 

Tussle

 

[3] between applications and 
middleboxes. Many applications encrypt contents 
with strong security mechanisms to protect their 
payloads from observation or modification. On the 
other hand, some middleboxes want to inspect 
payloads for better filtering, intrusion detection, etc. 
When those middleboxes cannot look inside packets, 
they generally drop packets. Therefore, we must find 
a resolution or reasonable compromise of this tussle. 

This paper discusses how well a simple relay 
based system, called XRAY (middleboX traversal by 
RelAYing), deals with these issues and provides other 
benefits such as flexible traffic control. XRAY helps 
authorized applications to traverse middleboxes by 
relaying both inbound and outbound traffic. It also 
helps network security by dropping packets for 
unauthorized applications. Since it provides the 
Berkeley socket API, any network application can be 
easily XRAY enabled. In our previous work [16], we 
presented CODO (Cooperative On-Demand Opening), 
which provides similar benefits as XRAY for 
organizations using the middleboxes that can be 
dynamically controlled by the add-on software we 
provide. However, unlike CODO, XRAY does not 
require dynamic control over middleboxes and has no 
restrictions on the type of middlebox it can support. 
XRAY also provides stronger control over traffic with 
a minor amount of performance overhead compared to 
CODO. SOCKS [14] also shares many characteristics 
and benefits with XRAY. However, it is designed only 
for client-server applications and may not be used by 
the Grid. We will further explain this and another 
limitation of SOCKS in §9. 

Relaying mechanisms have been considered as a 
secure way of middlebox traversal for years. Our 
contribution is (1) the reconsideration of the relaying 
mechanism as a middlebox traversal system in a 
broader and formalized context and (2) XRAY, a relay-
based system, which realizes the benefits of the 

relaying mechanism. 
In §2, we present a packet flow model within a 

middlebox and define the middlebox traversal problem 
within that model [16]. We include the model to make 
the paper self-contained. In §3, we introduce a concept 
that is important to secure traversal of middleboxes. 
The architecture and connection procedure of XRAY 
are presented in §4 and §5, respectively. §6 discusses 
the fault tolerance issue and §7 explains the 
implementation. §8 and §9 present performance data 
and related research, respectively. 

2. Model and Problem Definition 

The middlebox traversal problem has been around 
for many years, yet it remains vaguely defined, raising 
many questions such as "if a middlebox is opened for 
an application, does it blindly pass packets to/from the 
application?" and "how does a traversal mechanism fit 
in the security policy the middlebox tries to enforce?" 
To avoid confusion, we define the problem as follows. 

Middleboxes block malicious or unwanted traffic 
while allowing benign and desired traffic. What is 
malicious or unwanted (or equivalently benign and 
desired) is defined by middlebox rules. To traverse a 
middlebox, a packet must pass a chain of one or more 
tests defined by the middlebox rules. If a packet fails a 
test, it is rejected. Otherwise, it continues to traverse 
the chain of tests until it fails a test or passes all the 
tests. 

Figure 1 shows a packet flow model in a 
middlebox. When a packet enters a middlebox, it 
undergoes one or more tests that we collectively call 
the application-neutral test. This test specifies 
application-independent conditions such as IP address, 
source routing flag, and ICMP message type. This test 
drops packets considered dangerous no matter what 
application sends or receives them. For example, 
overly fragmented packets are considered dangerous 
and may be dropped at this stage. If a packet passes 
this test, it is either accepted or sent to the owner test. 
The owner test allows traffic for authorized 
applications and blocks traffic for unauthorized or 
dangerous applications. For example, many 
middleboxes allow SSH but block telnet and rlogin 
traffic. If a packet belongs to an authorized application, 
it may be allowed or sent to auxiliary tests specifically 
designed for individual applications. If an application 
is known to be vulnerable, say to a buffer overflow 
attack, an administrator may have an owner test rule to 
block the application. However, a better approach is to 
pass the application traffic only if it does not contain 
an attack signature. The auxiliary tests can be used to 
block only malicious packets while allowing benign 
ones. 
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Figure 1:  Packet flow model. Within a middlebox, packets traverse application-neutral, owner, and auxiliary tests in 
that order. Auxiliary and owner tests are not applied for some packets. 

Depending on middlebox implementations and 
configurations, packets may flow differently from our 
model: tests may be applied in a different order; 
multiple tests from different stages may be combined; 
some tests are not available in a middlebox and may be 
performed by a third party product such as an IDS 
(Intrusion Detection System) [9]. However, we believe 
that this model is general and accurate enough for our 
discussion. 

We define the connectivity problem as a situation 
where a desirable (and benign) application cannot 
traverse a middlebox. We believe that the problem 
occurs mostly because benign applications fail the 
owner test (false negative), as middleboxes are 
overzealous in blocking malicious applications. The 
owner test is also very important to network security 
because errors in this test may result in (1) malicious or 
undesirable applications passing middleboxes (false 
positive) or (2) incorrect auxiliary tests being applied 
to packets, resulting in false negatives and false 
positives. For these reasons, this paper (and middlebox 
traversal problems in general) focuses on the owner 
test. Our goal is to satisfy the following requirement: 

Authorized applications' traffic must pass the owner 
test and unauthorized traffic must not. 

Note that the owner test alone does not define the 
fate of a packet. The packet may fail a test before or 
after the owner test. Also, note that the problem is 
defined both from application and network security 
perspectives. Therefore, our goal is to develop a 
mechanism that helps applications to traverse 
middleboxes and helps (or complements) middleboxes 
with the owner test. 

3. Owner Binding 

To perform the owner test, a middlebox must 

know whether the packet under scrutiny is for an 
authorized application or not. In addition, knowing the 
sender/receiver applications of authorized packets is 
essential for logging and for performing further 
application specific tests (i.e. auxiliary tests in figure 1). 
Given a packet p, we define the owner binding OBM(p) 
as the mapping function of a middlebox M such that 

otherwisenull
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Note that the owner test problem becomes trivial 
once we can decide the owner binding. If OBM(p) 
returns null, the packet p fails the owner test at M. If an 
authorized application A is returned, the packet p 
passes the owner test and is sent to the auxiliary test for 
A, if any. Thus, an error-free owner binding is the 
strongest prerequisite for an error-free owner test. 
Unfortunately, the owner binding is not easy to do 
because packets generally do not convey information 
about their source/destination applications. Almost 
every middlebox uses port numbers to bind packets to 
their owner applications. For example, middleboxes 
often consider packets with port 80 as Web traffic. 
However, a port number is at most a hint to an 
application s identity because it is a shared resource 
used by any application with the appropriate privileges. 
Some P2P file sharing systems use port 80 and wrap 
their traffic in HTTP messages to deceive middleboxes. 
We may regard that these systems exploit inherent 
errors in using port numbers for the owner binding. 
Recognizing this problem, recent middleboxes [6] 
investigate payloads and drop packets if their traffic 
does not follow normal web semantics. Such 
middleboxes use both port number and content 
investigation for the owner binding. However, this type 
of testing cannot be perfect and may not even be 
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Figure 2: XRAY topology. Middleboxes trust their XRAY agents and allow packets to/from the agents. XRAY agents 
relay traffic for applications the network administrator authorizes. Non-XRAY applications may or may not traverse 
their middleboxes using other mechanisms. 

possible for dynamic applications whose traffic cannot 
be understood by peeking at payloads. 

4. Architecture 

Figure 2 shows a typical topology of XRAY. Each 
middlebox trusts one or more XRAY agents of the 
network it protects and bypasses some tests for packets 
addressed to/from them. Each XRAY agent is assigned 
a set of authorized applications and relays traffic for 
them but drops for others. To use XRAY, 
organizations must add or change a few middlebox 
rules but need not change middleboxes. 

Figure 3 shows XRAY components and their 
interactions. The figure also shows how XRAY fits in 
the packet flow model of §2. A middlebox filters or 
passes ordinary packets using various tests as 
explained in §2. However, it performs only the 
application neutral test for packets to/from an XRAY 
agent and delegates the remaining tests to the agent. 
An XRAY agent has a list of authorized applications 
that can communicate over its middlebox. Since the 
middlebox and the XRAY agent collectively enforce 
the security policy of the network, the list must be 
considered as a part of middlebox rules. The XRAY 
library reports, via XRAY commands, its XRAY agent 
about the application s activities such as listening on a 
socket, trying to connect a socket to a server outside its 
network, and closing a socket. Using this information 
and XRAY commands from remote sites, the agent 
dynamically creates (and deletes) relay points for the 
application as needed and optional plug-ins that the 
administrator defines for that application. Plug-ins can 
be used for application specific tests or logging. To 
make sure that only authorized applications can have 
relay points and accompanied plug-ins, XRAY uses 
strong security mechanisms for XRAY command 

exchanges. Strong security mechanisms also protect 
each relay point so that only intended application or the 
next hop can communicate through it. Inbound packets 
for an authorized application (1) undergo the 
application-neutral test at the middlebox, (2) are 
authenticated and integrity checked by the key 
protecting the relay point, (3) and undergo auxiliary 
tests defined by plug-ins attached to the relay point. 
The relay point, plug-ins, and the middlebox s 
application-neutral tests check the outbound packets, in 
that order. Note that a network can use XRAY and 
other traversal mechanisms together. In this case, 
traffic for XRAY-enabled applications (or claim-to-be) 
is controlled by the XRAY mechanism, while others 
are controlled by their mechanisms. 

XRAY provides many benefits; either as the direct 
result of using the relay mechanism or those connected 
to its design: 

 

Correct owner test. It is very difficult for a 
middlebox alone to achieve a correct owner test 
especially when applications use dynamic ports. 
XRAY relays packets only for the intended 
application via a relay point unless an attacker breaks 
the security mechanism protecting the relay point. 
Therefore, the XRAY agent achieves a practically 
error-free owner binding. This guarantees a correct 
owner test. Unauthorized application cannot pass the 
owner test without knowing the address of a relay 
point for an authorized application and breaking the 
security mechanism protecting the relay point. 

 

Complementing middleboxes. Not every 
middlebox provides all the tests of figure 1. For 
instance, most packet filtering and stateful 
middleboxes lack auxiliary tests. Organizations can 
complement such middleboxes by adding plug-ins to 
XRAY for selected applications without any change 
to middleboxes. 
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Figure 3: XRAY components. XRAY consists of the XRAY agent and the XRAY library. The XRAY agent is a 
daemon process running near its middlebox machine. Applications become XRAY-enabled by linking with the XRAY 
library. XRAY-enabled applications use XRAY calls instead of Berkeley socket calls. 

 

Tussle compromised. Relay points terminate 
security associations as well as transport connections. 
This hop-by-hop security provides each agent full 
access to payloads so that they can inspect traffic. On 
the other hand, applications can protect their contents 
from being observed or modified by other than 
relaying agents. Clearly, this approach is not ideal 
for applications because middleboxes have full 
access to payload, meaning applications loose some 
end-to-end security. However, middleboxes have the 
power of arbitration and may completely block 
applications when they cannot get information from 
packets. 

 

Flexible control. XRAY uses X.509 certificates to 
authenticate and authorize applications. This means 
that XRAY is very flexible and can enforce various 
security policies. For example, XRAY can 
differentiate versions or implementations of an 
application. If a vendor s implementation of an 
application turns out to be vulnerable to a dangerous 
attack, then it can be given a different certificate 
from other implementations and disallowed from 
communicating with the world. 

Clearly, one of the biggest weaknesses of relay-
based approaches is performance. Hop-by-hop 
encryption/decryption will slow down not only 
connection setup but also data transfer. Packets may 
have to traverse entire protocol stacks up and down in 
each relaying agent. Also, there are chances that many 
features such as reliability and flow control, which 
underlying network already provides, must be 
implemented again at a higher layer. These duplicated 
functionalities may make those systems slower. Some 
of these problems are inevitable costs for achieving a 
secure traversal with a desired level of control over 

packets, but others can be avoided or mitigated through 
careful design. We will explain how XRAY mitigates 
these performance problems in the following sections. 

5. Connection Procedure 

With XRAY, applications call XRAY functions. 
The call sequence is the same as with a Berkeley 
socket. For instance, a server creates a TCP socket, 
binds it to an address, makes it passive, and accepts 
connections from clients. A client creates a TCP socket, 
optionally binds it to an address, and connects it to a 
server. The server and client exchange data through the 
established connection. This section explains how 
XRAY connections are established and data are 
transferred over middleboxes as responses to XRAY 
calls from applications. 

5.1. Server binding 

In order to be able to accept connections from 
outside, server sockets behind a middlebox must be 
locally bound, registered to the XRAY agent of its 
network, and officially bound. 

Local binding is just the regular process of binding 
a socket to an address. Through the local binding, an 
(IP, port) pair, called the local address, is assigned to 
the socket. 

Since inbound connections are arranged by the 
XRAY agent of the network, enough information about 
a server socket must be kept in it. The registration 
process provides necessary information to the agent. 
After a server socket is bound to a local address, the 
server s XRAY library sends a registration request 
with the local address and the type of the socket. After 



authentication/authorization and the official bind 
(explained shortly), the agent records the information 
sent by the library and other information that it collects 
from the official binding process. 

Official binding is the process of assigning the 
official address, public/globally unique address, to a 
server socket. This is necessary to support server 
sockets locally bound to private addresses. When the 
agent receives a registration request with a private 
local address, it finds a public address and leases the 
address to the server socket. This leased address 
becomes the official address of the socket. Of course, if 
the local address is public, then the local address 
becomes the official address without address leasing. 
As a successful response to the registration request, the 
agent replies with the official address. 

Now that a socket could have two addresses: local 
and official addresses, while Berkeley socket API 
allows only one per socket, what address shall be 
known to the application? The answer is the official 
address as its name implies. When the application asks 
(by calling getsockname) for the address that an 
XRAY socket is bound to, the library returns the 
official address instead of the local (real) address. 

After the binding process, a server socket can 
become locally bound, half bound, or fully bound. A 
socket is in the locally bound state if it is locally bound 
to a private address but could not lease a public official 
address because its XRAY agent is not available at 
binding time. Sockets in this state can accept 
connections that are possible without XRAY s help. A 
fully bound socket has a public official address (either 
leased or not) and is successfully registered to its 
XRAY agent. Sockets in this state can benefit from 
XRAY service. Both intra and inter network 
connections are possible. 

A half bound socket occurs when registration with 
the agent is not possible or cancelled, but a global 
address is assigned. This happens when the agent is not 
available at the time of binding, but the socket s local 
address (and therefore official address) is public. A 
socket also becomes half bound when a socket was 
fully bound, but later it is deleted from the agent 
because of agent or network failure. As with locally 
bound sockets, sockets in this state can only accept 
connections that do not require XRAY service. 
However, they can become fully bound whenever the 
agent or the network recovers from the failure. Sockets 
in the half bound state periodically try to become fully 
bound. Note that locally bound sockets cannot be 
upgraded to the fully bound state because official 
addresses would be changed as the result of the 
upgrade. 

5.2. Connection setup 

This section explains how a client makes a 
connection, over middleboxes, to a server registered to 
its XRAY agent through the process explained in §5.1. 
We also assume that the client knows the official 
address of the server socket via an out-of-band 
mechanism. First, we explain how a client behind a 
middlebox makes a TCP connection to a server behind 
a different middlebox. This is the most complex and 
hardest situation. Connections for simpler cases are 
similar with some steps omitted. For UDP 
communications, a very similar procedure is performed 
when the application tries to send UDP data, by calling 
XRAY_send or XRAY_sendto, to a peer for the first 
time or after a certain inactive period. The following 
steps establish a connection: 
(1) The client application calls XRAY_connect with 

server s official address. 
(2) The client s XRAY library makes a TCP 

connection to the agent of the client s network (the 
client agent), does mutual authentication, 
establishes secret keys for further communications, 
and asks for a connection to the server. If a non-
blocking connect was called, then the library 
issues a non-blocking connect to the agent and 
returns immediately. The library closely watches 
network events to continue remaining processes as 
part of other XRAY calls such as XRAY_select 
and XRAY_connect for other sockets. 

(3) The client agent checks if the client is authorized 
to make outbound connections. If allowed, it 
makes a secure TCP connection to the agent of the 
server network (the server agent) and asks for a 
connection on behalf of the client. 

(4) The server agent checks if the server is authorized 
to accept connections from outside the network. 
Then it creates a relay point and informs the client 
agent that it can make a connection to the relay 
point. The relay point is actually two sockets, one 
for connection from the client and the other for a 
connection to the server. Those sockets are 
associated with the certificates of the client agent 
and the server, respectively, so that no one else 
can communicate via them. If plug-ins are defined 
for the server, the agent attaches them to the relay 
point. These plug-ins could be auxiliary tests for 
the server, specialized log functions, etc. 

(5) The client agent creates a relay point and plug-ins 
in the same way as the server agent did and 
notifies the client to connect to the relay point. 

(6) Overlay links three in this case: client-to-client 
agent, client agent-to-server agent, and server 
agent-to-server are established in parallel. All 



links are authenticated and checked to see if their 
intended peers are connected. 

(7) Client and server libraries send acknowledgments 
to each other. Upon receiving an acknowledgment, 
each party knows the end-to-end channel was 
successfully established. At this time the client 
library notifies the client application that the 
connection has been established by returning from 
a blocking XRAY_connect call or by returning 
the corresponding file descriptor as write ready for 
XRAY_select for a non-blocking call. The 
library on the server side queues the connection so 
that it may be returned when the application calls 
XRAY_accept. 
XRAY uses various techniques from our previous 

systems [10] [16]. For example, if an agent is running 
on a middlebox machine, it uses CODO techniques to 
reserve addresses, if necessary, and dynamically create 
pinholes for the relay points. If an agent is deployed 
outside of the server s network and not allowed to 
make a connection to the server, it instead uses the 
GCB technique to let the server make a connection to 
the relay point. 

The end-to-end acknowledgement in step (7) may 
seem unnecessary because the application can send 
data as soon as the overlay link is attached to the next 
hop. If one or more intermediate links have not been 
established yet, the data can be buffered at the relay 
points and may be pushed later. We did not take this 
approach in hopes to reduce application s frustration. 
Connection failures generally involve human errors 
such as mistyping the address or bad network 
configurations, while data transfer failures after the 
connection establishment are mostly caused by 
network errors and happen much less frequently. 
Therefore, most applications are prepared to handle 
connection errors but not well prepared for transfer 
errors. If XRAY reports successful connection with 
some intermediate links not finished yet, applications 
will see more data transfer errors not necessarily 
because of network errors. 

Connection establishment within a private network 
also needs help from XRAY agents. A client within the 
same private network as a server cannot make a direct 
connection with the (leased) official address of the 
server. In this case, the XRAY agent of the private 
network replies to client s connection request with the 
server s local address so that the client can make a 
direct connection to the server. No relay points are 
created for intra network connections. 

5.3. Data communication 

The result of the connection setup process is a 
communication channel between a client and a server 

composed of one or more overlay links connected 
together via relay points. Because data are encrypted 
and decrypted by each hop, relay points have the full 
access to the contents, while still providing appropriate 
level of end-to-end protection and secrecy to 
applications. 

Each relay point can have site-specific and 
application-specific plug-ins attached to it. These plug-
ins form a chain to be executed. Data arriving at a relay 
point are decrypted, checked by each plug-in in order, 
encrypted using the secret key for the next link, and 
forwarded to the next hop.  

XRAY provides the application transparency for 
underlying mechanisms not only for connection setup 
but also for data communication. We use block ciphers 
to secure each overlay link. It is not trivial to provide 
the stream-based semantics of TCP over record-based 
communication of block ciphers. For example, 
select must not return read ready when the network 
buffer has a partial record that cannot be decrypted. 
Instead, the application should be informed that it can 
read something from the network only when full 
records have been received and successfully decrypted. 
Similarly, select should not return write ready when 
the network buffer has small space that can hold only a 
partial record. To provide the application TCP s stream 
semantics, XRAY has a buffering mechanism that 
translates stream (of clear text) to record based 
communication (of cipher text), and vice versa. 

6. Fault tolerance 

Successful connection depends on the reliability of 
XRAY agents. Nevertheless, applications should 
continue to work with a limited ability in the event of 
agent failure. For example, when an agent is down, 
connections that do not require the service from the 
agent should continue working. 

When an agent is down, XRAY tries to provide as 
much service as possible. The local bound and half 
bound status explained in §5.1 enables server sockets 
to continue to be able to accept intra network 
connections. If a client s XRAY library cannot contact 
an agent, it tries a direct connection to the server as if 
the agent were not needed. 

If an agent recovers from its failure, sockets that 
were affected by the failure should become fully 
functional. To achieve this goal, we just need to 
upgrade half bound sockets to fully bound status so 
that they can accept connections from outside. The 
XRAY library periodically tries to contact the failed 
local agent. If successful, it registers the information of 
sockets to the agent and upgrades them to fully bound 
status. 
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Figure 4: XRAY performance (a) connection time (b) data transfer time. X-axis represents each experiment and 
Y-axis shows times in micro second for each experiment. The mean connection time of XRAY is 26,864 with the 
standard deviation of 1,832, while the average for OpenSSL is 16,166 with the standard deviation of 484. For data 
transfer, the mean time of XRAY is 903,374 with the standard deviation of 8,203, while the mean time for OpenSSL is 
498,273 with the standard deviation of 17,440. 

7. Implementation 

The XRAY library is implemented in C/C++ as a 
layer between the application and the kernel. 
Applications use XRAY socket calls to create an 
XRAY socket, bind it to an address, connect to a server, 
etc. In addition to socket calls, the library provides 
some file system calls so that applications may 
duplicate socket descriptors, make a socket non-
blocking, and multiplex multiple file descriptors, 
including XRAY sockets. It also has a few functions 
for process control, such as fork and execve. These 
are mainly for inheriting open sockets to child 
processes. All XRAY calls have the same APIs as their 
regular counterparts. This strategy is intended to 
facilitate application programming and enable 
dynamically linked applications to use XRAY without 
recompilation. 

8. Performance measurement 

To measure the performance, we set up two 
private networks. Each network has a Linux NAT box 
with two network interfaces as a headnode. 100Mbps 
Ethernet connects nodes within each private network. 
A departmental network (100Mbps) connects the two 
private networks. Neither inbound nor outbound 
connections are allowed in the private networks. Every 
machine has two 2.4 GHz CPUs with 512KB cache 
and 2GB RAM. 

Using a test suite that we wrote, we measured 

connection setup and data transfer times. In our test 
suite, a client makes a connection to a server and then 
sends 100 messages of 10K bytes long back-to-back. 
The server echoes back to the client. Upon receiving 
all echoes, the client tears down the connection. We 
inserted random delays between connections. Actual 
delay was determined using a Poisson process with a 
mean ( ) of 3 seconds. We used X.509 (RSA) public 
key for authentication and session keys establishment. 
SHA-1 and 3DES were used for integrity and 
encryption, respectively, of XRAY commands and 
application data. In order to understand the overhead of 
XRAY, we did the same experiments with OpenSSL 
[7] with NATs manually configured to allow traffic 
between two networks. For fair comparison, we 
configured OpenSSL to use the same mechanisms for 
authentication, encryption/decryption, and integrity. 
Since XRAY provides mutual authentication, we also 
configured OpenSSL clients to authenticate servers. 

Figure 4 (a) shows the results for connection setup. 
XRAY connections take 27 msec on average, which is 
1.67 times slower than regular OpenSSL connections. 
For each XRAY connection, five secure TCP 
connections are made in this experiment: two for 
XRAY command exchanges between the client and the 
client agent and between the client agent and the server 
agent, respectively; three overlay links for end-to-end 
channel between the client, the client agent, the server 
agent, and the server. Considering the number of 
connections and interactions in XRAY, connection 
times are surprisingly short. We determine that two 
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Figure 5: Concurrent connection setup. (a) The X-axis represents socket descriptors that non-blocking 
connections were issued with. The Y-axis shows the times of each connection issued ( x

 

mark) and finished (dot). 
The time difference between the first connection issued and the last connection finished is 1.325 seconds. (b) The X-
axis shows the number of concurrent connections issued. The Y-axis shows the total time to set up multiple 
connections. 

 

factors help XRAY s connection performance. First, 
the parallel connection setup of end-to-end channel (i.e. 
three connections in this case) reduces the overall 
connection time. Second, XRAY uses the session 
resumption [8] to avoid the expensive public key 
mechanism. XRAY entities cache and reuse security 
sessions to communicate with others they have recently 
talked with. Since XRAY agents are commonly 
contacted entities, session reuse is often possible. Also, 
note that all connections for end-to-end channel can be 
established without using a public key mechanism 
because all entities must have talked with each other 
for exchanging XRAY commands. Figure 4 (b) shows 
the data transfer results. The figure shows that XRAY 
data transfer is 1.81 times slower than the direct 
OpenSSL communication. We believe that this 
overhead is reasonable considering the relaying and 
encryption/decryption operations by two agents. 

To see how XRAY scales, we also tested 
concurrent connection setup. Figure 5 (a) shows that 
multiple connections can be established concurrently 
rather than in a serial manner. In this test, a client in a 
private network issued 50 concurrent connections (i.e. 
non-blocking connections) to a server in another 
private network and recorded the times of connection 
issued and finished for each socket. The figure shows 
that multiple connections are established at the same 
time rather than one-by-one. Some connections (e.g. 
45th, 46th, and 49th) finished earlier than those that 
started earlier.  Figure 5 (a) also shows that all 50 
connections were finished within 1.325 seconds, which 

is only 29 times as slow as a single connection setup 
using the same test program, instead of an expected 50 
times for serial establishment. Figure 5 (b) shows how 
the total time varies as the number of concurrent 
connections increase. In this test, a client 
simultaneously issued up to 200 non-blocking 
connections to a single server in a different private 
network. The client issued one connection to measure 
the time of single connection setup, and then issued 
two connections in non-blocking fashion to measure 
the time to setup two connections, and so on. The 
result shows that it took about 4.7 seconds to establish 
200 connections, which is only 78 times as slow as a 
single connection setup. Those results show that both 
the XRAY library and agent can handle many 
concurrent connections very well and that XRAY 
mitigates performance overheads by interleaving 
operations. 

9. Related work 

Many middlebox traversal systems have been 
proposed or developed. Unlike XRAY and our 
previous work CODO (Cooperative On-Demand 
Opening) [16], previous research mainly focuses on 
how to enable application traversal of middleboxes, 
with little attention to the security of the network. 
CODO dynamically adds and removes owner test rules 
for authorized applications. CODO has many 
characteristics in common with XRAY. CODO helps 
applications communicate with the world as well as 



helps middleboxes to perform quality owner test; it 
controls both inbound and outbound traffic; it uses 
strong security mechanisms to protect unauthorized 
applications from having owner test rules created for 
them. CODO is more efficient than XRAY because 
with CODO applications communicate directly through 
holes made at middleboxes. However, the owner test 
CODO constructs is less secure than the owner test 
XRAY constructs.  With CODO, attackers can cause 
owner test false positives using address spoofing, 
which is impossible with XRAY. CODO also has an 
additional requirement that middleboxes provide an 
API for dynamic control. Therefore, XRAY supports 
more organizations and provides more secure traversal 
while CODO provides secure and efficient traversal. 

SOCKS [14] is also similar to XRAY. It enables 
communications through a middlebox by a proxy that 
relays connections. The proxy is application-
independent and can be configured to use strong 
security mechanisms to authenticate applications. 
However, SOCKS does not have the concept of 
address leasing to server sockets (§5.1) and generally 
does not support private networks. SOCKS is also 
designed only for client-server applications and cannot 
support applications such as P2P and the Grid. In 
SOCKS, each application must act as a client or a 
server, but not both. A client application may accept 
connections over middleboxes. However, these passive 
connections must be secondary connections and a part 
of an active session that is initiated by an active 
primary connection. FTP is a good example. A 
SOCKS-enabled FPT client can establish an active 
connection (the control channel) to an FTP server 
behind a middlebox and then accept a passive 
connection (the data channel) from the same server. 
However, with SOCKS, a client application cannot 
have an independent passive socket to accept 
connections from arbitrary endpoints. 

Other middlebox traversal mechanisms both 
middleware and fundamental approaches are reviewed 
in [10] and [16]. 

10. Conclusion 

In this paper, we discussed middlebox traversal 
problem in a broader and formalized context of 
network security and presented a relay-based 
middlebox traversal system, called XRAY. XRAY is a 
middlebox-friendly system, which helps not only 
applications to communicate with the world but also 
middleboxes to better filter traffic. XRAY controls 
both inbound and outbound traffic in a secure manner. 
Middleboxes can achieve a practically error-free owner 
binding and owner test. Additionally, the conflict of 
interests between applications and middleboxes can be 

appropriately addressed with XRAY. Our experiments 
also showed that XRAY provides such benefits at 
reasonable performance overheads. 
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