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Abstract

The drastic increase in the data requirements of scientific
applications combined with an increasing trend towards
collaborative research has resulted in the need to trans-
fer large amounts of data among the participating sites.
The heterogeneous nature of the storage systems employed
by the different sites makes transfer of data among them
a difficult problem. The general tendency has been to ei-
ther use simple scripts which require human intervention to
deal with failures, or dump data to tapes and mail them.
We introduce a method to build and operate data-pipelines
between mass-storage systems lacking a common interface.
This method can be applied easily and efficiently to trans-
fer data between various mass storage systems. It does not
need any human intervention during transfers, and it can
recover automatically from various kinds of storage system,

nerwork, and software failures, guaranteeing completion of

the transfers.

1. Introduction

With the increase in collaborative research, the amount
of data that has to be transferred between participating sites
is increasing. In many cases, due to the lack of a common
interface and the know-how to perform high performance
bulk data transfers, researchers have resorted to dumping of
data to tapes and shipping them via Federal Express [6].
Owing to the various data grid initiatives [11] [13] [21],
the underlying network capacity has increased enough to be
able to support such bulk data transfers. The lack of a com-
mon interface between mass-storage systems necessitates
the building of a data-pipeline via intermediate nodes. Ap-
propriately designed data-pipelines can provide additional
functionality, improve performance and ensure fault isola-

tion.

The issues involved in designing data-pipelines are not
well understood. Furthermore, automatic failure recovery
has not been attempted in data-pipelines. In this work, we
present a method to build data-pipelines and automate their
operation. We also discuss the functionality of the data-
pipelines we have built and report their performance. We
show the different failures that occurred during the opera-
tion of our pipelines and the extent of our success in han-
dling failures in an automated manner. To the best of our
knowledge, this is the first work of its kind in transferring
data between heterogeneous systems in a fully automated
manner.

2. Motivation

Heterogeneity is inherent in a grid (7] computing envi-
ronment. Multiple protocols have been developed for ac-
cessing data with each having some advantage over the
other. The only way to transfer data between heteroge-
neous systems lacking a common interface is to build a data-
pipeline via intermediate nodes. Unfortunately there is no
documented work on designing such a pipeline or compari-
son of different pipeline designs. Furthermore we have not
come across any effort to automate the operation of such
pipelines or report the issues involved in operating such a
pipeline. ‘

Building a data pipeline with a single intermediate node
is generally sufficient to transfer data between heteroge-
neous systems. On the other hand, building a pipeline with
two intermediate nodes, one close to the source and an-
other close to the destination provides additional function-
ality and potential performance improvement.

Mass-storage system protocols are designed for local-
area access and may not work well in the wide-area. Build-
ing a pipeline with two cache nodes lowers the load on the




mass-storage servers as they have to transfer data only in
the local-area network to/from the cache nodes and do not
have to handle wide-area failures. It improves wide-area
performance as we can employ wide-area optimized proto-
cols for data transfer between the cache nodes. It gives us
fine granularity of control over wide-area network resource
usage. We can employ data transfer applications which have
bandwidth-regulation capabilities [22]. This allows us to
enforce a policy that best suits our needs. For example, we
can transfer data between the cache-nodes at 200 Mbps dur-
ing night and at 50 Mbps during the day if we desire to use
the idle bandwidth during the night and not load the network
during the day.

Because we are transferring large amounts of data, TCP
checksum may not be sufficient [20]. With two cache nodes,
we can increase the reliability of the transfers by computing
a md5 or similar checksum at the source cache node and
verifying it at the destination cache node. Similarly we can
devise ways to ensure that there is no data-corruption in the
data flow between the mass-storage and cache nodes.

The complexity of mass-storage systems makes prob-
lem identification difficult. If we were to perform a direct
transfer between two mass-storage systems and encounter a
problem, we would have difficulty identifying whether the
problem is at the source mass-storage, destination mass-
storage, the wide-area network or a combination of them.
Building a pipeline with the two cache nodes allows us to
locate the fault easily.

With the two cache-nodes, we can insulate the mass-
storage servers from wide-area failures providing fault iso-
lation and fault tolerance. Typically mass-storage servers
have periodic scheduled maintenance. If we know the time
window of scheduled source mass-storage maintenance, we
can aggressively cache data at the source cache node before
the maintenance and keep data flowing during the mainte-
nance window. Similarly we can buffer data at the destina-
tion cache node during the destination mass-storage main-
tenance.

3. Related Work

Allcock et al [1] introduce the GridFTP protocol and
Replica Catalog and discuss how they can be used for se-
cure and efficient data transfer and data replication. Reli-
able File Transfer Service(RFT) [19] allows byte streams
to be transferred in a reliable manner. It is able to han-
dle a wide variety of problems like dropped connections,
machine reboots, and temporary network outages automati-
cally via retrying. Kangaroo [23] provides high throughput
wide-area data movement for remotely executing jobs by
overlapping CPU and I/O. Kangaroo also has a certain de-
gree of fault tolerance to cope with failures that occur in the
wide-area. GridFTP, RFT and Kangaroo are tools that can

be used to move data between systems supporting their in-
terface, but they cannot move data between heterogeneous
storage systems lacking a common interface.

Feng [6] mentions a case where visualization scientists at
Los Alamos National Lab dump data to tapes and send them
to Sandia National Laboratory via Federal Express as it is
faster than electronically transmitting them via TCP over
the 155 Mbps(OC-3) WAN backbone.

Lightweight Data Replicator (LDR) [15] can replicate
data sets to the member sites of a Virtual Organization or
DataGrid. It was developed for replicating LIGO [17] data,
and it makes use of Globus tools to replicate data. In its
present form, LDR expects the use of a single data trans-
port protocol (GridFTP). Our work deals with transferring
data between systems which do not support a common data
transport protocol. Further we feel that our work is more
general in nature and can also be used for replication. Our
work also exposes the different types of failures that can
occur in such heterogeneous transfers.

4. Methodology

In our approach, we regard data transfers as real jobs
which need to be queued, scheduled and managed just like
computational jobs. Due to the storage limitations of in-
termediate nodes in a data-pipeline, we need to remove the
files from intermediate nodes after they have reached the
next stage of the pipeline. A Directed Acyclic Graph(DAG)
with nodes representing jobs allows us to easily represent
dependencies between the jobs. We represent the file-
removal, checksum and data transfer as nodes in a DAG
and insert appropriate dependencies between them. We use
a manager to parse the DAG and submit the jobs to the ap-
propriate scheduler to execute on the appropriate machine.

We believe that data transfer jobs should be treated dif-
ferently from computational jobs such as checksums, since
they may have different semantics and different character-
istics. Existing computational job schedulers do not under-
stand the semantics of data transfers well. For example, if
the transfer of a large file fails, we may not want to sim-
ply restart the job and re-transfer the whole file. Rather, we
may prefer to transfer only the remaining part of the file.
A computational job scheduler may not be able to handle
this case. For this purpose, data transfer nodes and com-
putational nodes in the DAG should be differentiated. Data
transfer jobs should be submitted to a scheduler capable of
scheduling and managing data transfers, and computational
jobs should be submitted to a scheduler capable of schedul-
ing and managing computational jobs.

Each submitted job should be monitored carefully. When
a job completes successfully, the next job should be submit-
ted to be queued and executed by the corresponding sched-
uler. If a job fails, it should be resubmitted until it succeeds.



2. DAG specification )

C.submit
nt A child C, %

Figure 1. Prototype Model. A DAG specifica-
tion file consisting of both computational and data
placement jobs is submitted to DAGMan. DAGMan
then submits computational jobs to Condor, and data
placement jobs to Stork.

Some transfers may just hang for a long time due to prob-
lems in the system, or bugs in the underlying protocol im-
plementation. There should be timeouts, so that if a transfer
takes longer than a certain amount of time, it should be ter-
minated and restarted. These “retry” and “kill-and-restart”
features can be incorporated either in the DAG management
level, or in the scheduling level.

In the prototype of our model, we used Stork [16] as
the scheduler for data transfer jobs. Stork is a specialized
scheduler for data placement activities in heterogeneous en-
vironments. Data placement encompasses all data move-
ment related activities such as transfer, staging, replication,
space allocation and deallocation. Stork can queue, sched-
ule, monitor, and manage data placement jobs and it ensures
that the jobs complete.

The Condor [18] workload management system was se-
lected as the scheduler for computational jobs in our model.
Condor provides a job queuing mechanism and resource
monitoring capabilities. It allows the users to specify
scheduling policies and enforce priorities. Condor has an
extension called Condor-G [9], which allows users to sub-
mit their jobs to inter-domain resources by using Globus
Toolkit [8] functionality. In this way, user jobs can get
scheduled and run not only on Condor resources but also
on PBS [10], LSF [25], LoadLeveler [12], and other grid
resources.

To perform the management of the DAGs, we employed
the Directed Acyclic Graph Manager (DAGMan) [4] (24]
which is a service for executing multiple jobs with depen-
dencies between them. DAGMan accepts a declaration that
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Figure 2. Data-pipeline with One Intermediate
Node. Building a data-pipeline with one intermedi-
ate node may be sufficient for data transfer between
two heterogeneous storage systems.

specifies the jobs to be executed and the order of their exe-
cution. It logs the execution of the DAG to persistent stor-
age, allowing it to resume a DAG where it left off, even in
the face of crashes and other failures.

We have introduced the concept of data placement jobs
to DAGMan. Previously data placement jobs in DAG-
Man were performed through pre-scripts and post-scripts.
Whenever a job failed, all of its pre-scripts should have
to be redone again from scratch, which might require re-
transfer of large files which may have been transfered suc-
cessfully before. Current DAGMan can treat data place-
ment jobs as real jobs, which is actually a requirement of
our method. It can differentiate between computational jobs
and data placement jobs, and then submit computational
jobs to Condor/Condor-G and the data placement jobs to
Stork. The progress of both computational and data place-
ment jobs can be monitored through user log files of Condor
and Stork. Figure 1 shows how all of these pieces com to-
gether in our prototype model.

5. Case Study

National Center for Supercomputing Applications
(NCSA) scientists wanted to perform certain processing on
the Digital Palomar Sky Survey (DPOSS) [5] image data
residing on SRB [2] mass storage system at San Diego Su-
percomputing Center (SDSC) in California. The total data
size was around 3 TB (2611 files of 1.1 GB each). NCSA
located in Illinois has its own mass-storage system called
UniTree [3]. Since there was no direct interface between




SRB and UniTree at the time of the experiment, the only
way to perform the data transfer between these two storage
systems was to build a data pipeline. For this purpose, we
designed three different data pipelines using our model to
transfer the data.

5.1. First Data Pipeline Configuration

The first approach we employed was to set up a cache
node (quest2.ncsa.uiuc.edu) at the NCSA site very close to
the UniTree server. This approach allowed us to transfer the
DPOSS data first from the SRB server to the NCSA cache
node using the underlying protocol of SRB, and then from
the NCSA cache node to UniTree server using the under-
lying protocol of UniTree. This pipeline configuration is
shown in Figure 2.

The NCSA cache node had only 12 GB of local disk
space for our use and we could store only 10 image files
in that space. This implied that whenever we were done
with a file at the cache node, we had to remove it from there
to create space for the transfer of another file. Including the
removal step of the file, the end-to-end transfer of each file
consisted of three basic steps, all of which we considered
as real jobs to be submitted either to the Condor or Stork
scheduling systems. Then all of these three node DAGs
were joined together to form a giant DAG with dependen-
cies between transfers for the whole process as shown in
Figure 3, and the whole process was managed by DAG-
Man.

The SRB and UniTree servers had gigabit ethernet(1000
Mb/s) interface cards installed on them and the NCSA cache
node had a fast ethernet(100 Mb/s) interface card installed
on it. We found the bottleneck link to be the fast ethernet
interface card on the NCSA cache node. Figure 4 shows
the topology of the network, bottleneck bandwidth and la-
tencies. We got an end-to-end transfer rate of 40Mb/s from
the SRB server to the UniTree server. We observed that the
bottleneck was the transfers between the SRB server and
the NCSA cache node. So we decided to add another cache
node at the SDSC site to regulate the wide area transfers.

5.2. Second Data Pipeline Configuration

In the second pipeline configuration, we introduced an-
other cache node (slic04.sdsc.edu) to the system. This cache
node was placed at the SDSC site, very close to the SRB
server. In this case, the data is first transfered from the SRB
server to the SDSC cache node using the underlying proto-
col of SRB, then from the SDSC cache node to the NCSA
cache node using third-party GridFTP transfers, and finally
from the NCSA cache node to the UniTree server using the
underlying protocol of UniTree. This pipeline configuration
is shown in Figure 5. The space limitations of the NCSA
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Figure 3. Three Node DAGs. Three Node DAGs
are combined into a giant DAG to perform transfers
in the first data-pipeline, with concurrency level = k.
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Figure 4. Network Topology. The topology of
the network used in the transfers, with the bottleneck
bandwidth and latency between each node.

cache node applied to the SDSC cache node as well, which
required careful cleanup of transferred files at both nodes.
Including the cleanup steps, the end-to-end transfer of each
file consisted of five basic steps as shown in Figure 6. Then
all of these five node DAGs were joined together to form a
giant DAG as in the previous pipeline. And then all of these
jobs were executed by Condor and Stork systems.

The SDSC cache node had a gigabit ethernet interface
card installed on it, but the link between the SDSC cache
node and the NCSA cache node still had a bandwidth of
100Mb/s due to the fast ethernet interface of the NCSA
cache node. Using this configuration, we got an end-to-end
transfer rate of 25.6 Mb/s, and the link between the SDSC
cache node and the NCSA cache node turned out to be the
bottleneck.
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Figure 5. Data-pipeline with Two Intermediate
Nodes. Building a data-pipeline with two interme-
diate nodes, one close to the source and one close to
the destination, may provide additional functionality
and increase performarnce.

5.3. Third Data Pipeline Configuration

The third data pipeline configuration was almost the
same as the second one, except that we replaced third-party
GridFTP transfers between the SDSC cache node and the
NCSA cache node, which were the bottleneck, with third-
party DiskRouter [14] transfers.

This time we got an end-to-end throughput of 47.6 Mb/s,
which was better than either of the previous data-pipeline
configurations.

6. Results and Highlighted Points

This study has three main contributions. First, we show
that data pipelines can be built between heterogeneous re-
sources using heterogeneous middleware if necessary, to
transfer data between otherwise non-compatible systems.
Second, we show that all possible network, server, and soft-
ware failures can be recovered automatically and comple-
tion of transfers can be guaranteed without any human in-
tervention. And finally, we compare the performance of dif-
ferent possible pipeline alternatives, and observe the effect
of introducing new nodes to the system.

6.1. Data Transfer Between Heterogeneous Systems
We have successfully built a data-pipeline between two

heterogeneous mass-storage systems, SRB and UniTree.
We have also employed different data transport protocols
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Figure 6. Five Node DAGs. Five Node DAGs are
combined into a giant DAG to perform the transfers
in the second and the third data-pipelines. k is the
concurrency level.

like GridFTP and DiskRouter for the wide-area data trans-
fer. Finally, we fully automated the operation of the pipeline
and successfully transferred around 3 Terabytes of DPOSS
data from the SRB server to the UniTree server.

6.2. Automated Failure Recovery

The most difficult part in operating data-pipelines is han-
dling failures in an automated manner. During the course
of the 3 Terabytes data movement, we had a wide variety
of failures. At times either the source or destination mass-
storage systems stopped accepting new transfers. Such out-
ages lasted about an hour on the average. In addition we
had windows of scheduled maintenance activity. We also
had wide-area network outages, some lasting a couple of
minutes and others lasting longer. While the pipeline was in
operation, we had software upgrades. We also found a need
to insert a timeout on the data transfers. Occasionally we
found that a data transfer command would hang. Most of
the time, the problem occurred with third-party wide-area
transfers. Once in a while, a third-party GridFTP transfer
would hang. In the case of DiskRouter we found that the
actual transfer completed but we were not notified of the
completion. Because of these problems, we set a timeout
for the transfers. If any transfer does not complete within
the timeout, it is terminated, cleaned up and restarted.

Figure 7 shows two outages. The first outage happened
because UniTree refused new transfers. It lasted for 40
minutes. At that point, two transfers to UniTree were in
progress. The transfers completed before the timeout ex-
pired. The second outage lasted slightly more than one
and a half hours. It was caused by a reconfiguration of the
DiskRouter system. We would like to mention that in both
of the cases, the data transfers resumed without human in-
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Figure 7. Automated Failure Recovery in case
of Server Problem and Software Upgrade. The
transfers recovered automatically although first the
UniTree server experiences some problems and then
the DiskRouter servers running on the cache nodes
get reconfigured and restarted.

tervention and we noticed them by looking at the logs.

Figure 8 shows a case where multiple failures occurred.
First the SDSC cache machine was rebooted and then there
was a UW CS network outage lasting a couple of hours
(Note: the data transfers are initiated and managed from
skywalker.cs.wisc.edu). The pipeline automatically recov-
ered from these two failures. Finally the DiskRouter server
stopped responding for a couple of hours. The DiskRouter
problem was partially caused by a network reconfiguration
at StarLight hosting the DiskRouter server. Here again, our
automatic failure recovery worked fine.

6.3. Comparing Performance of Different Data
Pipeline Configurations

We wanted to look at how the mass-storage system pro-
tocols performed in wide-area. We also wanted to look at
the penalty of introducing an additional node. We wanted to
see how much performance improvement can be obtained
by running wide-area optimized protocols for data trans-
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Figure 8. Automated Failure Recovery in case
of Network, Cache Node and Software Prob-
lems. The transfers recovered automatically again
despite almost all possible failures occurring one af-
ter the other: UW CS network goes down, SDSC
cache node goes down, and finally DiskRouter stops
responding.

fers between the cache nodes. For these experiments, we
performed only rudimentary tuning of the system. For the
first pipeline, we found that we got the best performance
when we performed 10 parallel file transfers. Similarly,
with GridFTP we got the best performance with 10 paral-
lel streams. In the case of DiskRouter, we did not attempt
any tuning as the DiskRouter auto-tune mechanism worked
fine for us. Table 1 shows the end-to-end performance of
data transfers from SRB server to UniTree server with our
rudimentary tuning.

Comparison of performance of pipeline 1 and pipeline
2 shows the penalty associated with adding a node to
the pipeline. Pipeline 3, which is similar to pipeline 2
with GridFTP replaced by DiskRouter, performs better than
pipeline 1 and pipeline 2. The reason is that DiskRouter is
optimized for wide-area transfers and has auto-tune capa-
bility which automatically tunes the socket-buffer size and
the number of sockets according to the network conditions.
We were informed that carefully tuning the I/O and socket



buffer sizes in GridFTP would substantially improve its per-
formance. This shows that running wide-area optimized
protocols between cache nodes can improve performance
enough to offset the penalty of an additional node.

[ Configuration | End to end rate |

Pipeline 1 40.0 Mb/s .
Pipeline 2 25.6 Mb/s
Pipeline 3 47.6 Mb/s

Table 1. End-to-end performance of different
pipeline configurations.

Another advantage of having cache nodes at both sides
was that we had control over those cache nodes, whereas we
had no control over the SRB and the UniTree mass-storage
servers. To transfer data to/from the mass-storage servers,
we need to use whatever protocol they provide. These pro-
tocols may not work well under certain conditions or may
have certain limitations. Further these protocols may not
allow us to tune their performance. This is especially a
drawback for wide-area transfers as they benefit consider-
ably from tuning. With a source and a destination cache
node, we made the mass-storage system work in the envi-
ronment (local-area) where they are known to work well
and chose an appropriate protocol for the wide-area transfer
and got the ability to perform the necessary tune-up. Fur-
ther we found that we were able to run a checksum or other
computation on the data at the intermediate nodes.

7. Future Work

We are planning to build automatic tuning capability into
the system. Specifically we would like to add a feature to
dynamically determine the optimal concurrency level for
the different protocols. We are also considering building
functionality into the system to dynamically choose the op-
timal pipeline configuration. We are planning on a network
monitoring infrastructure which would allow us to choose
where to place the DiskRouter nodes and how many to place
so that we get the best performance. With respect to fault-
tolerance, we are building features so that if there are mul-
tiple possible protocols between two stages of a pipeline
and if one of the protocol has some temporary problem, we
would be able to fall back to another protocol. The main
motivation for this is that we may have a fast protocol with
implementation bugs and a robust protocol with lower per-
formance. We would like to use the fast protocol when
it works and fall back to the more stable protocol when it
fails.

8. Conclusion

In this paper, we have shown a method to build data-
pipelines and operate them in a fully automated manner.
Our method allows data transfers between heterogeneous
systems lacking a common interface. Through a real-life
data transfer involving thousands of large files, we have
shown that our method works and is resilient to storage sys-
temn, network, and software failures. We present our method
as a viable alternative to dumping data to tapes and fedexing
them or writing scripts and baby-sitting the scripts to deal
with failures. We have also performed a study on differ-
ent pipeline configurations and benchmarked their perfor-
mance. We have shown that adding additional nodes does
not necessarily decrease the end-to-end performance of the
system and may in fact increase flexibility and improye per-
formance if done properly. '
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