
Condor services for the Global Grid:
Interoperability between Condor and OGSA *

Clovis Chapman1, Paul Wilson2, Todd Tannenbaum3, Matthew Farrellee3,
Miron Livny3, John Brodholt2, and Wolfgang Emmerich1

1 Dept. of Computer Science, University College London,
Gower St, London WC1E 6BT, United Kingdom

2 Dept. of Earth Sciences, University College London
Gower St, London WC1E 6BT, United Kingdom

3 Computer Sciences Department, University of Wisconsin
1210 W. Dayton St., Madison, WI 53706-1685, U.S.A.

Abstract

In order for existing grid middleware to remain viable it is important to investigate their potential
for integration with emerging grid standards and architectural schemes. The Open Grid Services
Architecture (OGSA), developed by the Globus Alliance and based on standard XML-based web
services technology, was the first attempt to identify the architectural components required to
migrate towards standardized global grid service delivery. This paper presents an investigation into
the integration of Condor, a widely adopted and sophisticated high-throughput computing software
package, and OGSA; with the aim of bringing Condor in line with advances in Grid computing and
provide the Grid community with a mature suite of high-throughput computing job and resource
management services. This report identifies mappings between elements of the OGSA and Condor
infrastructures, potential areas of conflict, and defines a set of complementary architectural options
by which individual Condor services can be exposed as OGSA Grid services, in order to achieve a
seamless integration of Condor resources in a standardized grid environment.

1. Introduction

The definition of the Open Grid Service
A r c h i t e c t u r e (O G S A) a s a
development standard was an important step
towards creating a seamless grid infrastructure
encapsulating services and resources
worldwide. Though it is currently in the process
of being re-factored into a family of standards,
the Web Service Resource Framework (WSRF)
and Web Service notification (WS-notification),
the concepts it defines remain: by building on
XML-based Web Service standards for
communication and service description, and
incorporating mechanisms enabling the
creation, naming and discovering of stateful
transient Grid service instances, OGSA aimed
to provide an extensible, manageable and
dynamic framework to support the global grid.

For such standards to be embraced by the
Grid community it is important to investigate
the development potential for standard
compliant versions of existing grid tools and
middleware. Condor is an example of a widely
adopted software package firmly established
within current Grid computing. It is a feature-
rich package providing high-throughput
computing resource and workload management

software for cycle scavenging on heterogeneous
distributed systems. However whether or not it
remains at the forefront of Grid computing will
largely depend on its ability to adapt to
emerging standards without affecting the
features that make it so popular. The wide range
of functionality provided by Condor, and the
well-defined decomposition of its services,
make it a prime candidate for such an
investigation.

Bringing together Condor and Grid Service
standards will not only further leverage
acceptance of grid standards, but can also add
significant new functionality designed to push
Condor’s boundaries. By embedding Grid
considerations within the Condor architecture
we considerably increase the potential for
integration of its various services in a
standardized Grid environment.

We present in this paper different
architectural alternatives by which Condor
services can be exposed as OGSA Grid
Services. These alternatives will be evaluated
with respect to current capabilities of Condor
and other Grid technologies available.

* The research for this report was partially funded by
NERC as part of the e-Minerals project.

2. Mapping the problem areas

2.1 The Open Grid Services Architecture
(OGSA)

The Open Grid Services Architecture
(OGSA), delivered in July 2003, is in essence a
marriage of Grid and Web Service technologies
and concepts. Central to OGSA is the notion of
Grid Services: “Web Services providing a set of
well-defined interfaces (service discovery,
dynamic service invocation, lifetime
management and notification) and that follow
specific conventions (naming, upgradeability)”
[2].

There are very strong motivations for the
Grid community to adopt Web Services: Web
Services provide increased levels of
manageability, extensibility and interoperability
between loosely coupled services across
heterogeneous environments. OGSA brings
these advantages to the grid community by
extending W3C Web Services standards such as
the Simple Object Access Protocol (SOAP),
Web Services Description Language (WSDL)
and WS-inspection to incorporate grid specific
concepts and requirements, namely:

- Naming: A Grid Service must be uniquely
identifiable. All Grid Service instances,
whether transient or not, are identified by a
globally unique and invariable Grid Service
Handle (GSH). This logical name comprises
of a URI and a scheme for its resolution to a
Grid Service Reference (GSR), which
contains instance-specific information such
as network addresses, service definitions and
network protocol bindings and has a limited
lifetime. Mappings are maintained by a
handle resolver service.

- Transient services and service lifetime
management: Transient services maintain
state specific to a requested set of activities,
and means to dynamically create and
terminate service instances when no longer
required must be provided. The dynamic
instantiation of a transient service instance
can be requested from a suitable Factory
service, and individual grid service instances
provide soft-state lifetime management
operations.

- Service meta-data management: A Grid
Service must be open to inspection,
exposing its characteristics and public
attributes (service data). Service data is in
essence an encapsulation of XML elements.

- Service discovery: enabling users to
discover suitable services through service

registries and service groups. A service
group is in essence a directory maintaining
entries of service GSHs and accompanying
descriptive service data elements.

- Notification: Providing means to exchange
asynchronous notifications between
services. A notification from a source
service (notification source) is in the form of
a service data ‘push’ to registered clients:
clients (notification sink) subscribe for one
or more service data elements to be
forwarded to them whenever they are
updated.

2.2 Condor

The Condor Project has performed research
in distributed high-throughput computing for
the past 18 years, and maintains the Condor
High Throughput Computing resource and job
management software originally designed to
harness idle CPU cycles on heterogeneous pool
of computers.

In essence a workload management system
for compute intensive jobs, it provides means
for users to submit jobs to a local scheduler and
manage the remote execution of these jobs on
suitably selected resources in a pool. Condor
differs from traditional batch scheduling
systems in that it does not require the
underlying resources to be dedicated: Condor
will match jobs (matchmaking) to suited
machines in a pool according to job
requirements and community, resource owner
and workload distribution policies and may
vacate or migrate jobs when a machine is
required. Boasting features such as
checkpointing (state of a remote job is regularly
saved on the client machine), file transfer and
I/O redirection (i.e. remote system calls
performed by the job can be captured and
performed on the client machine, hence
ensuring that there is no need for a shared file
system), and fair share priority management
(users are guaranteed a fair share of the
resources according to pre-assigned priorities),
Condor proves to be a very complete and
sophisticated package.

Architecture overview

Condor’s key activities - job-resource
allocation, job startup and execution, and
metadata collection and display – are kept
separate, allowing compartmentalization of
Condor into clearly defined components,
distributed amongst submission site, central
manager and execution site, as illustrated in
figure 1:

- Central Manager: For every condor pool a
single central manager is responsible for
collecting resource characteristics and usage
information (i.e. accounting) from all
machines in the pool and enforcing
community policies. It is based on this
collected information, and on user priorities,
that job execution requests can be matched
to suitable resources for execution during a
negotiation cycle.

- Submit Machine: This system client allows
users to submit jobs to a local virtual
‘queue’ (scheduler - schedd). The scheduler
will request resource allocations for its jobs
from the central manager during a
negotiation cycle. Once a resource has been
allocated to a job, the scheduler will spawn a
shadow daemon responsible for managing
the remote execution that job, and perform
tasks such as state checkpointing,
rescheduling the job in case of failure, or
perform system calls made by the job
running remotely on the local machine.

- Execute Machine: The execute machine,
represented by the startd daemon, runs jobs
on behalf of clients. It advertises its
capabilities and usage information - as well
as requirements and preferences upon a
match - to the central manager, and manages
the local execution of the job (via a spawned
starter daemon), whilst protecting resource
owner policies (e.g. a job may be vacated if
the user touches the keyboard).

The service-based decomposition of the
Condor architecture has enabled many of these
services to be adapted for different uses and
purposes, represented by different Universes, or
Condor run-time environments. Apart from the
standard universe - providing the entire set of
Condor functionality, such as checkpointing and
migration, to programs re-linked with a special

Condor library – and the Vanilla Universe –
providing less features but suited to a wider
range of programs, Condor supports specialized
universes for Java, PVM (parallel applications),
and MPI applications, as well as interaction
with Grid resources managed by an array of grid
middleware technology including the Globus
Toolkit 3.x, Unicore, and others.

Class Advertisements

An important characteristic of Condor,
central to it’s matchmaking capabilities, is its
use of Class Advertisements (ClassAds).
Matchmaking is a symmetric process; both job
and machine requirements and ranks are
considered when these are paired up. A ClassAd
is a set of uniquely named expressions, using a
schema-free semi-structured model. ClassAds
enable mappings between attributes and
expressions to be specified and evaluated with
respect to another ClassAd . A ClassAd in
Condor will either express a job’s
characteristics, requirements and preferences
(e.g. memory, OS, etc.) or express the
characteristics of a computing resource and any
requirements or preferences upon the jobs it is
willing to service.

3. Related Research

3.1 The Globus Toolkit 3 and the GRAM
service

In order to leverage adoption of OGSA, the
third incarnation of the Globus Toolkit (GT3),
developed by the Globus alliance and released
in June 2003, provided the first, Java-based,
implementation of the Open Grid Services
Infrastructure (OGSI), which included Grid
Service containers supporting both stand-alone
operation or deployment within J2EE Web or
EJB hosting environments. It is this
implementation that we use here as the
reference implementation of OGSI.

The GT3 also brings in line with OGSA a
number of higher-level services provided by its
predecessor, such as the Globus Resource
Allocation Manager (GRAM). The Globus
GRAM is intended to provide a standard
interface to job submission and monitoring for
various underlying resource managers (Condor
included). The GT3 GRAM defines the concept
of a transient Managed Job Service, generated
for each job submission, as a service abstraction
over the underlying job scheduling process.

As a standard interface to multiple
underlying schedulers, an obvious drawback is

that it is not possible for the GRAM to provide
the complete set of functionality of every
underlying system it supports. Defining a
Condor-specific interface to the Grid, and
having interface considerations embedded
within the Condor architecture enables us to
refine this interface to address the limitations
that may be encountered when accessing
Condor through the GRAM. In this way we do
not have to limit ourselves to “wrapping up” an
entire Condor pool as a job execution service
but can also attempt to exploit the individual
capabilities of Condor services in a Grid setting.

3.2 Condor and the Grid

The capability of managing jobs in an inter-
domain setting, across independently managed
resources, has been explored and introduced in
Condor via the following mechanisms:

- Flocking: If a job cannot be serviced by
resources of the local pool, the Condor
scheduler can be configured to submit the
job execution request to the central manager
of another.

- Condor-G: Condor-G enables the scheduler
daemon to submit jobs to resources
presenting a Globus GRAM interface;
providing job management services on the
client side.

- Condor glide-in: Condor glide-in is a
mechanism by which temporary resources
managed by Globus can be added to a
Condor pool. It enables Condor execution
daemons to be submitted as jobs to local
schedulers through the Globus GRAM
interface. In effect, this mechanism enables
users to build a personal Condor pool on
resources independently allocated by
different underlying scheduling systems.
These Condor execution daemons will report
back to a Condor collector when run on
allocated resources, and Condor-G can then
be used to submit jobs directly to these
daemons.

We will attempt to demonstrate here means
to consolidate and further improve on these
concepts using OGSA.

4. Architectural Options

In this section we explore the different
alternatives by which Condor services can be
harnessed in a Grid environment by integrating
OGSA mechanisms and concepts within the
core of the Condor framework.

We structure the architectural options
according to two models of job management
and execution:

- Delegat ion of job management
responsibilities to local schedulers:
Exposing Condor services through OGSA
enables us to support a model by which
remote clients can request that the execution
of a job on a pool of Condor resources be
managed on their behalf by a scheduler local
to that pool.

- Controlled access to Condor-managed
resources: By integrating OGSA within the
Condor framework, we can provide secure
and controlled access to individual Condor
managed resources, either directly (e.g.
Computing on Demand), or through a well-
defined allocation service.

These two complementary approaches cater
for very different client requirements. Through
delegations of job management responsibilities
to local schedulers, remote clients are freed
from the burden of coordinating resource usage
and allocation. By using the Open Grid Services
Architecture (OGSA) as a standard for defining
and exposing Grid Services, we can identify,
based on Condor’s current architecture, a set of
services through which remote clients can
estimate underlying resource availability,
submit jobs with corresponding parameters,
binary input files and executables, and monitor
the actual job execution.

However, the delegation process effectively
shields these remote clients from any
understanding of the underlying allocation
process; remote clients must bind jobs to a pool
queue using only estimates as to when a
resource will be allocated to service that job.
Whilst exposing descriptions of resource usage
and pool policies may enable meta-schedulers to
make more accurate predictions about the
availability of pool resources, these clients
would be considerably more efficient if
provided with an interface to allocation services
granting controlled access to managed
resources: clients would then only bind a job to
a resources when the resource has actually been
allocated. Such a client, however, must be
capable of dealing with the highly dynamic
nature of the pool and the temporal availability
of resources.

The primary motivation behind exposing
services provided by Condor-managed
resources is hence to enable scheduling and
resource usage to be performed across multiple
independently allocated resources; spreading

the entire set of Condor job management
functionality, such as checkpointing and
migration, across sites whilst respecting local
policies and site autonomy. Exposing resource
services also enables us to provide Computing
on Demand functionality - special job
requirements may necessitate that users request
services directly from specific resources – as
well as provide access to server side daemons in
a Condor glide-in setting.

4.1 Delegation of job management
responsibilities to local schedulers

Supporting this model of job submission
requires providing remote access to the
following areas of functionality:

- Job submission and queue management -
providing means for remote clients to submit
job descriptions and accompanying input
files and executables, as well as means of
managing their jobs once submitted.

- Job execution management - including job
monitoring and execution control.

- Resource information providers - which
provide various descriptions of a set of
resources, such as the underlying availability
and type of resources or pool policies,
enabling users to estimate the potential
usage they can obtain from a set of resources
before submitting jobs.

The transient scheduler

The Condor scheduler is in essence a
customer agent responsible for managing a
user’s jobs. The scheduler should present
remote clients with a transaction-oriented
interface, complete with two-phase commit
capabilities, for job submission and queue

management functions. The scheduler must also
provide means to transfer files to and from the
submission machine by incorporating
specialized file transfer mechanisms.

Whilst the scheduler could be exposed as a
persistent Grid service, we can gain many
benefits from exploiting the transient service
concept introduced by OGSA. Allowing users
to generate one or more instances of the
scheduler would enable the isolation of user-
specific sets of related job and queue
management activities. The notions of job
scheduling and resource allocation in Condor
are relatively distinct operations; resources are
allocated on a fine-grained basis, based on user
priorities and job pre-emption rules and this
would be further highlighted by not obligating
users to share a single scheduler instance at the
submission site. The scheduler instance can then
be cleanly destroyed upon termination of the
requested activities.

We also envisage considerable security
benefits: Whilst a Condor scheduler does not
have to be run with root access, it is currently
very much preferable, particularly when
multiple users share a submission site. By
allowing users to instantiate their own instances
of the scheduler, we effectively eliminate the
need for the scheduler to have root access. The
responsibility of managing that privilege would
be relegated instead to the scheduler factory.

Job representation

Adopting OGSA mechanisms allows us to
explore different job representation strategies:
how a job is perceived and how it is accessed
and managed externally can and should vary
during its lifetime in a Condor pool.

As previously described, Condor relies on
job ClassAds to specify parameters and
requirements for a job, and to provide a
representation of a job and its status during its
lifetime. By exposing the scheduler as a Grid
Service, the representation of a job at
submission time would henceforth be as a
parameter of a scheduler invocation, essentially
a data structure - in the form of a job ClassAd -
containing all the parameters required to create
the execution environment.

 However once allocated to a resource,
considerable benefits may be gained from
providing a service abstraction of a running job
- encapsulating state and execution management
functions of a specific job, as well as more
complex ‘intra-job’ management functions. This
role could be taken on by the shadow, spawned
as a transient grid service with lifetime

management functions tied to the lifetime of a
job. Though the scheduler itself could be a
shadow factory, with job requests hence
embedded within service instantiation requests,
a much preferable approach would be to have
the creation of a shadow managed by a separate
factory service on the same or different host.
This would enable us to deal with the
synchronous implementation of factories in
OGSI implementations: the client does not have
to be blocked until the job is allocated to a
resource, as the scheduler will itself perform the
service instantiation only when required.

Exposing queue contents and asynchronous
notifications

Whilst an interface to the query API of the
scheduler could be provided - through which
external clients can obtain information about the
queue - queue contents should be exposed as a
collection of service data elements. Exposing
job ClassAds as individual service data elements
enables external applications to query the
scheduler about job queue information relying
on OGSA service data query mechanisms.

This also enables us to notify registered
clients of job state changes. The asynchronous
notification mechanism and service data are
very much interlinked - a notification being a
‘push’ of service data to subscribed clients. We
envisage that upon submission of a job request,
clients will be subscribed with the scheduler
service in order to receive information about job
state changes in the form of updated job
ClassAds. A potential source of concern is the
lack of reliability of asynchronous notifications
in OGSA: notifications bound to service data
imply a focus on content availability rather than
event notification, which is why exposing job
ClassAds as service data elements fits very
much within OGSA’s approach to notification.

The collector

The Condor collector gathers information
about availability and type of resources in the
form of resource ClassAds. Exposing the
collector enables external applications to
request information about the state of a pool and
estimate resource availability before submitting
a job to the scheduler. In order to enable
external applications to query the collector
using OGSA mechanisms, the collector should
be exposed as a Grid service, with XML
representations of resource ClassAds exposed
as individual service data elements.

Information obtained from the collector
could be complemented with exposing the
policies by which resources will be allocated to
users to service their job, as maintained by the
negotiator. However such a service would
require a more suitable representation of
customer capabilities to be adopted in Condor,
encapsulating not only priorities but also
authorization and resource access control
information.

4.2 Providing controlled access to Condor-
managed resources

Whereas our first approach defined a set of
external interfaces to the client services of a
Condor pool, we now move on to illustrate how
OGSA can be embedded within the Condor
framework in order to provide controlled access
to the Condor resources themselves.

In order to support this model, we must
consider how resources can be requested and
obtained through an allocation process -
consisting of m a t c h m a k i n g and resource
claiming – authorized by the central pool
manager based on community policies; and how
individual resources services can be exposed.

The central manager

The functionality of the central manager in
Condor is provided in terms of Condor daemons
by both the collector, which is responsible for
collecting ClassAds sent by all daemons in a
Condor pool - including the s t a r t d
advertisements stating resource characteristics,
availability and preferences and scheduler
advertisements stating that a particular user has
idle jobs - and the negotiator, who will, based
on community policies, match during regular
negotiation cycles the resource advertisements
to the scheduler requirements and inform
interested parties.

In this context, where resources themselves
are exposed as grid services, the collector
concept is not entirely dissimilar to that of an
OGSA Service Group, or registry. The collector
could be extended - or wrapped - to present an
OGSA service group interface, and store Grid
S e r v i c e H a n d l e s along side XML
representations of ClassAds describing further
characteristics, enabling all services to register
themselves.

Based on information in the collector, the
negotiator will, during a negotiation cycle,
contact in priority order schedulers holding jobs
in order to obtain information about their
resource requirements. It is based on this
information that a resource can be matched to

this scheduler, and that both resource and
scheduler can be informed of the match, which
they are free to accept or refuse. The fact that
resource requirements need to be obtained from
the scheduler during a cycle implies that a client
needs to be exposed a grid service in order to
provide an interface through which this can be
achieved. Similarly, the startd must present an
interface through which it can be informed of
the match.

Client considerations

In order for a meta-scheduler to take full
advantage of such an environment, it must be
capable of distinguishing allocation requests
from job execution submissions. As a client can
choose to bind a job to a resource only when it
has actually been allocated the resource, it needs
to be capable of managing allocation requests
separately from job execution requests in order
to take full advantage of this framework.

To a certain extent Condor already offers
this capability. When using Condor glide-in, the
condor_glidein program can be used to request
the allocation of resources from a specific site
and schedule the execution of server side
daemons on the foreign management system.

Resource representation

Condor resource-side architecture maps
quite well to OGSA’s factory concept. The
startd could be exposed as a Factory service.
Upon activation at startup, it will publish its
description with the collector (exposed as an
OGSA registry) as well as present an interface
through which the negotiator can inform it of a
match. Once matched, the startd can spawn
individual starter instances exposed as transient
Grid Services through which remote clients can
manage the local execution of jobs. It should be
noted that the OGSI GT3 implementation
provides a lazy instantiation scheme, by which,
whilst a grid service handle is generated and
returned by a factory when a service
instantiation is received, the actual service
instance is only generated and deployed when a
client attempts to resolve the corresponding
GSH. In short a service instance is not actually
created until the first attempt to communicate
with it.

However, communication between client
and starter is not solely one-way, as the starter
will communicate with the shadow on the client
host to request system calls and forward
checkpoint data, etc. Support for this
functionality, will require exposure of the

shadow as a Grid Service instance, which ties in
well with our previous description of how the
shadow can be exposed, but with focus on
‘internal’ communication with the shadow and
its remote system call (RPC) functionality.

We must also consider the value of such a
representation in its own right and not solely
with regards to the above resource management
services, as the actual use of a Factory also
allows us to support Computing-On-Demand.
Clients could, if authorized to do so, request job
execution services directly, or support the use of
Condor glide-in: communicating with these
components using standardized OGSI (e.g.
notification, service data querying, etc.) and
GSI (e.g. credential mappings) communication
and invocation protocols can add an extra layer
of control and security over their use (e.g. for
communication through firewalls). In the
specific case of Condor glide-in the daemons to
be run by a foreign resource management
system could be submitted with a self-contained
OGSI hosting environment.

4.3 Security and Identity management

We must adopt a two-layered approach to
authorization and access control: whilst a
security infrastructure such as the Grid security
Infrastructure (GSI3 – part of the GT3) can
provide us with remote user authentication and
credential mappings between global identities
(Grid certificates) and identities local to the
Condor pool, actual authorization and access
control should continue to be performed by
Condor based on these local identities. The
Condor architecture defines an access control
and authorization framework tailored to it’s
needs , spec i fy ing d i f fe ren t ro les
(administrator/owner/negotiator/user) and levels
of access (read/write) to components. Another
important particularity of Condor is that it only
requires users to have an account on the
submission machine of a pool.

Whereas a grid map-file, which maps global
identities to local accounts, could be used for
the submission services, this does not
necessarily apply to other Condor services
which actually require a modification to the
mapping mechanisms in order to cater for the
distributed operation of Condor. In effect, whilst
a GSI map-file will allow administrators to
specify mappings between a certificate’s
Distinguished Name (DN) and a username, a
Condor specific mapping would require
mappings from DNs to username@domain
combinations. Condor components can
currently be configured to use the previous
version of GSI in this manner, and this

capability should be updated where needed to
incorporate the OGSI capabilities of GSI 3.

4.4 Grid Service Container

Though the service container has been
referred to on a number of occasions, we should
briefly consider its actual role in the system, and
potential mappings to functionality provided by
the condor_master. The role of the master in
Condor is to ensure that daemons that should be
run on a particular type of machine are started,
and monitored for failure, in which case the
master will restart them. It also allows for
administrative commands to be issued either
locally or remotely, such as reconfiguring
daemons or turning them off.

In an OGSA environment, this responsibility
is left to the service container and hosting
environment (e.g. J2EE server). The ability to
deactivate and reactivate services, and the fact
that we can define as part of the Grid service
implementation the course of action to be taken
when activating/deactivating a service, should
allow master functionality to be performed via
the container. For example, we could allow the
configuration file to be reprocessed whenever a
service is reactivated. However, the ability to
access this functionality remotely is limited by
the capabilities of the hosting environment. A
J2EE server for example may allow remote
management of Grid Services.

5. Evaluation and conclusion

This investigation aimed to provide a
relatively complete overview of the different
levels of interoperability between Condor and
OGSA. However, though some elements may
provide interesting future developments, in the
immediate term, we cannot recommend that
every daemon in Condor should be replaced by
an equivalent Grid service. The focus should be
on providing external access to Condor
functionality, with minimal interference to the
overall intricate relationships between Condor
components (such as the shadow and starter).

An excellent starting point would hence be
to provide external access to the scheduler,
taking advantage of concepts such as service
data and transient service instances to boost
Condor capabilities in a Grid environment. The
ability for Virtual Organizations to instantiate
their own scheduler instances, coupled with
external administrative services such as
discovery and monitoring services, would
provide the basis for a powerful set of VO-wide
management tools, which will be the focus of
our future implementation work.

Though the investigation was conducted
from an OGSA perspective, implementation
will be conducted using the superseding Web
Service Resource Framework and WS-
notification family of standards. It should be
noted that this evolution in grid standardization
does not reduce the worth of such an
investigation. The concepts and functionality
defined by OSGA will be left mostly
unchanged: “WSRF essentially retains all of the
functional capabilities present in OGSI, while
changing some of the syntax […], and also
adopting a different terminology in its
presentation” [8].

References

[1] Chapman, C., Wilson, P., Emmerich, W.,
Tanenbaum, T., Farrelle, M., Livny, M. Condor
Services for the Global Grid, draft report,
National Environment Research Council, 2004,
http://www.cs.ucl.ac.uk/staff/c.chapman/ogsa-
condor-draft-030304.pdf
[2] Foster, I., Kesselman, C., Nick, J. and
Tuecke, S. The Physiology of the Grid: An
Open Grid Services Architecture for Distributed
Systems Integration. Globus Project, 2002.
[3] Tuecke, S., Czajkowski, K., Foster, I., Frey,
J., Graham, S., Kesselman, C., Maguire, T.,
Sandholm, T., Vanderbilt, P., Snelling, D. Open
Grid Services Infrastructure (OGSI) Version
1.0. G l o b a l G r i d F o r u m D r a f t
Recommendation, 2003.
[4] Sandholm, S., Tuecke, S., Gawor, J., Seed,
R., Maguire, T., Rofrano, J., Sylvester, S.,
Williams, M. Java OGSI Hosting Environment
Design – A Portable Grid Service Container
Framework. Globus Project, 2002
[5] Condor Team, Condor Version 6.6.0
Manual. University of Wisconsin-Madison,
2003
[6] Livny, M., Tannenbaum T., Thain, D.
Condor and the Grid, in Fran Berman, Anthony
J.G. Hey, Geoffrey Fox, editors, Grid
Computing: Making The Global Infrastructure
a Reality, John Wiley, 2003.
[7] Butchart, B., Chapman, C., Emmerich, W.
OGSA First Impressions: A Case Study using
the Open Grid Service Architecture, in Proc. Of
the All Hands Meeting 2003, Nottingham, 2003.
[8] Foster, I., Frey, J., Graham, S., Tuecke, S.,
Czajkowski, K., Ferguson, D., Leymann, F.,
Nally, M., Sedukhin, I., Snelling, D., Storey, T.,
Vambenepe, W., Weerawarana, S. Modelling
stateful resources with Web Services, Version
1.1, IBM, 2004

