
Chapter 9

CONDOR AND
PREEMPTIVE RESUME SCHEDULING

Alain Roy and Miron Livny
Department of Computer Science, University of Wisconsin-Madison

Abstract Condor is a batch job system that, unlike many other scheduling systems, allows
users to access both dedicated computers and computers that are not always
available, perhaps because they are used as desktop computers or are not under
local control. This introduces a number of problems, some of which are solved
by Condor’s preemptive resume scheduling, which is the focus of this paper. Pre-
emptive resume scheduling allows jobs to be interrupted while running, and then
restarted later. Condor uses preemption in several ways in order to implement
the policies supplied by users, computer owners, and system administrators.

1. INTRODUCTION

Condor is a batch job system that allows users to take advantage of both
dedicated and non-dedicated computers. Traditionally, batch job systems have
allowed users to submit jobs only to dedicated local computers, such as multi-
processor supercomputers and clusters of computers. In addition to such ded-
icated computers, Condor allows users to submit jobs to computers that are
only occasionally available for Condor to access, such as desktop computers
belonging to other users or distant computers under someone else’s control.
We see such computers not as a problem, but as an opportunity, so we call
them opportunistic resources.

The ability to use these non-dedicated computers provides users with extra
computing power, but also adds complexity to Condor in two ways. The first
is the need to remove jobs, called preemption, before they are have completed
executing in order to meet the needs of owners, users, and administrators and to
deal with unplanned outages. The second is the need to deal with the inevitable
heterogeneity of computers available to Condor.



136 GRID RESOURCE MANAGEMENT

1.1 Preemption

In our experience [LL90], computer owners will only allow their comput-
ers to run Condor jobs if Condor does not negatively impact their activities.
Therefore, Condor will checkpoint and preempt jobs when an owner needs
their computer. This could either be when an owner returns to a computer af-
ter an absence, or when the computer is busy with some other activity, or for
another reason based on the owner’s policies. When another computer is avail-
able to run the job, Condor will resume the job on that computer. Note that the
job can be resumed without loss of work because checkpointing saves the state
of the job. This is preemptive resume scheduling, and the focus of this paper.

In order for preemption to be most useful, Condor needs to be able to check-
point jobs so that work is not lost when the jobs are preempted. Condor can
checkpoint most jobs without requiring the jobs to be modified if they can be
relinked with libraries provided by Condor [LS92]. There are some restrictions
on jobs that can use Condor’s checkpointing, particularly jobs that spawn new
processes or use kernel threads. In practice, many jobs can be relinked to use
Condor’s checkpointing, and thereby gain the benefits of preemptive resume
scheduling.

Preemptive resume scheduling has been instrumental in Condor’s success.
Jobs can be preempted in order to meet the needs of any of the three types
of stakeholders in a Condor system: users who submit jobs, owners of com-
puters, and system administrators. Condor can preempt jobs on the behalf of
users when better resources become available. Condor can preempt jobs on
the behalf of computer owners to ensure that the owner’s policy on sharing
the computers is met. Finally, Condor can preempt jobs to meet the policy of
the system administrators, who are concerned about the efficiency of the en-
tire Condor pool of computers. In the remainder of this paper, we will discuss
how Condor uses preemption in order to meet the goals of these three types of
stakeholders.

1.2 Heterogeneity

While it is relatively easy to build a cluster of dedicated computers using
identical or very similar types of computers, it is generally not possible to build
homogeneous Condor pools which include non-dedicated computers. Com-
puters within a department are often bought at different times and for different
purposes, and it is common for them to be a variety of architectures and to have
a variety of characteristics. Condor needs to be able to cope with this variety
in order to provide the maximum amount of computational power to its users.

In order to deal effectively with this heterogeneity, Condor uses matchmak-
ing to match user’s jobs with appropriate computers. Both jobs and computers
are described with the ClassAd (short for classified advertisements) language.



Condor and Preemptive Resume Scheduling 137

ClassAds provide schema-free descriptions of jobs and resources that is easy
to use effectively, yet powerful enough to allow for sophisticated policies and
constraints to be expressed by users, owners, and administrators. ClassAds and
matchmaking are described in Section 3.

2. THE ADVANTAGES OF PREEMPTIVE RESUME
SCHEDULING

Preemptive resume scheduling has several important properties.

Preemptive resume scheduling allows the scheduler to take advantage of
resources that may only be available occasionally. Because jobs can be
checkpointed, preempted, and run elsewhere, work done on such a non-
dedicated computer is not lost. Instead, this computer has provided an
opportunity to accomplish extra work.

Preemptive resume scheduling relieves the need to do backfilling, which
is commonly done in schedulers. Backfilling allows a scheduler to take
advantage of holes in the schedule to run more jobs and thereby increase
its efficiency. With a preemptive resume scheduler, backfilling becomes
much simpler, or even unimportant. It is not critical to schedule certain
tasks during specific time-slices. Instead, any task can fill a time-slice,
and it can be preempted later. Note that Condor does not use backfilling
at all, since it does not expect users to specify time limits for their jobs,
nor does it enforce any time limits.

Preemptive resume scheduling helps to fairly share computers between
users. For instance, as we show below, jobs can be preempted when a
user that has a higher priority needs access to a computer. When com-
bined with a system that provides dynamic calculation of user priorities,
this can ensure that users are treated fairly.

Preemptive resume scheduling allows high priority jobs to run when a
high-priority user demands it by suspending lower priority jobs tem-
porarily while the high priority jobs run. Because of the ability to re-
sume preempted jobs, they can be easily resumed when the high priority
job finishes. This is referred to as computing on demand.

3. SCHEDULING IN CONDOR

3.1 The Triumvirate

When users submit jobs to Condor, they do not submit to global queues,
as they would in many other batch systems [BHKL00]. Instead, Condor has
a decentralized model where users submit to a local queue on their computer,



138 GRID RESOURCE MANAGEMENT

and Condor processes on that computer interact with the Condor matchmaker
and the computers that run the job. Interaction with the matchmaker is called
matchmaking, and interaction with other computers is called claiming. Both
of these interactions are essential steps to run a job.

Note that each computer in a Condor pool runs only a single job at a time,
not multiple jobs. Computers with multiple CPUs may run one job per CPU.

Three distinct entities are involved in running a job: the owner of the job,
the owner of the computer or computers that run the job, and the administrator
of the entire Condor pool. Because each of these entities may have complex
policies about running jobs, we can consider them a sort of triumvirate that
controls how jobs are run. (The word “triumvirate” comes from the groups of
three people that used to rule the Roman empire, such as Caesar, Pompey, and
Crassus.) These individual triumvirates arise and fall as jobs are submitted and
run.

To understand how matchmaking and claiming work, it is necessary to un-
derstand what ClassAds are. Please refer to Chapter 17 or [RLS98] for more in-
formation about ClassAds. From those descriptions, recall two important fea-
tures of ClassAds: ClassAds are schema-free associations between names and
expressions. Expressions can be evaluated in the context of another ClassAd,
and this is the basis of matchmaking. For instance, a job ClassAd that contains
an expression:

Requirements = other.Type == "Machine"
&& other.RAM > 500

says that the job must be matched with something that is a machine with at
least 500 units of RAM. ClassAds do not define the units.

3.2 Matchmaking and Claiming

In order to run a job submitted to Condor, there are interactions between
three components, as shown in Figure 9.1: the user agent, the owner agent,
and the matchmaker. These components represent the triumvirate and ensure
that their wishes are followed.

Note that in other Condor literature, you may find the user agent referred to
as the schedd, the owner agent referred to as the startd, and the matchmaker
referred to as two programs, the collector and the negotiator. These are not
obvious names, but they persist for historical reasons.



Condor and Preemptive Resume Scheduling 139

Owner
Agent

User Agent

Advertise Jobs

Provide Match

Advertise Machines

Claim Computer

Matchmaker

Figure 9.1. The Condor triumvirate which governs where jobs are run and when they are
preempted.

3.2.1 Participants in Matchmaking and Claiming

There are three components to the triumvirate, and they are responsible for
representing the needs of the people or groups they represent.

User Agent When a user submits a job, it is the user agent’s responsibility
to make sure that the job runs to completion, assuming no errors in the
user’s code. It maintains a persistent queue of jobs and a history of past
jobs. If other components in Condor fail, it is responsible for retrying
the job and informing users of problems that occur.

Owner Agent When a owner decides to add a computer to the Condor
pool, the owner agent ensures the owner’s policy for how the computer
can be used is enforced. It is also responsible for starting jobs that are
submitted to the computer.

Matchmaker The matchmaker is responsible for finding matches be-
tween user and owner agents, and is also responsible for implementing
pool-wide policies that affect the overall performance and stability of the
entire pool.

3.2.2 The Process of Matchmaking and Claiming

When a user submits a job to the user agent, it is immediately stored in a
persistent queue. This persistent queue allows the user agent to recover should
the agent or the computer on which it is running fail. The job is uniquely
identified by the name of the user agent, which is unique within the pool, plus
a number unique to the user agent. The user agent then sends a ClassAd that
informs the matchmaker that it has jobs to run. As long there are jobs that are
not running, the ClassAd is sent to the matchmaker every five minutes. The
user agent does not rely on stability or persistence in the matchmaker.

Similarly, every five minutes each owner agent in a Condor pool submits a
ClassAd that describes the computer it is responsible for. ClassAds are also



140 GRID RESOURCE MANAGEMENT

sent whenever the state of a computer changes significantly. For instance, the
state of a computer can be “idle”, meaning that it is available to run jobs, or
“owner”, meaning that the owner of the computer is using it; when the state
changes from idle to owner or vice-versa, the owner agent will inform the
matchmaker.

The matchmaker accepts ClassAds from user and owner agents, but does
not store them persistently. Instead, the matchmaker discards ClassAds if the
job or computer ClassAds are not resubmitted for a while—they are presumed
to be unavailable for running jobs if they do not regularly report themselves as
available. Should the matchmaker ever crash, it will simply relearn the state
of the Condor pool within five minutes. This soft-state mechanism enables
reliable operation without complicated persistence mechanisms.

Whenever a job is submitted, or every five minutes, the matchmaker at-
tempts to find matches between jobs and computers. This is called the nego-
tiation cycle. It contacts each user agent that has jobs to run, and obtains the
ClassAds that represent the job. It then matches the jobs against each machine
ClassAd in the pool to see if it can run the jobs. In order to match, each job’s
requirements (as given in the job’s ClassAd) are evaluated in the context of
the machine and the machine’s requirements are evaluated in the context of the
job. These both must evaluate to true in order for the job to match.

When a match is found, the matchmaker informs both the user agent and
the owner agent of the match, then continues matchmaking. It is up to the user
and owner agents to claim the match independently of the matchmaker. To do
this, the user agent contacts the owner agent. Because the matchmaker was
operating on information that may have been out of date, the owner checks
to make sure that the job and machine ClassAds still match. This is useful
because, for instance, the machine’s owner may have reclaimed the machine
for his own use since the matchmaker performed that match, and therefore no
jobs are able to run on the machine.

If the match can still be made, then the user agent sends the job directly to
the owner agent and it begins executing. The user agent monitors the progress
of the job, and should any problems outside of the program scope [TL02] oc-
cur, such as failure of the owner agent, the user agent will go through the
matchmaking process again. If the job fails on its own accord, such as a seg-
mentation fault due to a pointer problem, the user agent records the error and
informs the user.

When a job begins running on a computer, a new process on the same com-
puter as the user agent begins running. This process is known as a shadow,
and it is responsible for implementing Condor’s remote I/O capabilities. If a
job has been relinked with the Condor libraries in order to be able to be check-
pointed, as described above, the shadow will perform two functions. First, it
will assist in checkpointing if necessary, either saving checkpoints directly on



Condor and Preemptive Resume Scheduling 141

the computer the job was submitted from or redirecting them to a specialized
checkpoint server. Second, it will redirect I/O on behalf of the application.
That is, all I/O performed by the remote application will be performed on the
computer that the job was submitted from. This allows jobs to have access to
their files no matter where they execute, and also makes them less dependent
on free disk space from the remote computer.

Note that running jobs continue even if the matchmaker fails for any rea-
son because all communication is between the computers that submitted the
jobs and the computers that are running the jobs. While the matchmaker is
unavailable no new jobs can be matched, but all old jobs continue on with no
difficulty. When the matchmaker becomes available, jobs will continue run-
ning within five minutes.

This is just a sketch of the matchmaking process, and there are several com-
plicating factors. In particular, there are several ways in which jobs can be
preempted while running. These are described below.

4. PREEMPTION IN THE TRIUMVIRATE

As described above, running a job in a Condor pool is a cooperative process
between three agents that represent the concerns of three people, or groups
of people. The user agent represents the person who wishes to run a job, the
owner agent represents the person who owns a machine, and the matchmaker
represents the maintainer of the Condor pool. The interests of all the people
involved must be respected. In part this happens by allowing users and owners
to specify requirements for a successful match. Another important aspect is
preemption: each of these three parties is allowed to preempt a running job in
order to satisfy their requirements.

In order for preemption to be the most effective, checkpointing should be
used to allow the state of the program to be saved. When programs meet cer-
tain requirements (such as not using long-lived network communication) and
can be relinked with Condor libraries, they can be checkpointed so that they
can be restarted after they are preempted. Condor can checkpoint jobs when
they are preempted from a machine, users can manually request that check-
points be made, and Condor can periodically checkpoint jobs to ensure against
future failures. Not all jobs can be checkpointed, so preemption must be used
cautiously. But from a user’s perspective, preemption is an inevitable fact of
life: even in a dedicated cluster of computers, there may be crashes and disrup-
tions that cause jobs to fail during execution. Note that in a Grid environment,
this may happen even more frequently. Being able to checkpoint and react to
preemption, for whatever reason it might occur, is an essential part of Condor’s
approach to reliability.



142 GRID RESOURCE MANAGEMENT

4.1 User Preemption

There are three ways that a user can preempt a job.
The first way is manually: a user can always remove a job that is either wait-

ing to run or running by executing a command. The job can be checkpointed
then rerun, or it can be forcefully terminated, which does not allow the job to
be checkpointed and restarted from where it was terminated.

The second way is an automation of the above process. If the user knows
some conditions under which the job should be removed—perhaps the user
knows that when the job has run for more than 12 hours it must be doing some-
thing incorrectly—these conditions can be specified when the job is submitted.
Condor’s user agent will monitor this condition, and should it ever become
true, it will stop the job on behalf of the user. As of Condor version 6.4, the
job is not checkpointed, though this is likely to change in future versions.

The last, and most interesting way, is that Condor could periodically re-
match the job in order to see if could run on a better machine. If a better
machine would be found, Condor could preempt the job on the machine on
which it is running, then restart it on the better machine. This is not currently
implemented, but Condor is structured to make this easy to implement. Most
of the changes would take place within the owner agent which would continue
to advertise a job while it was running, but would change the Requirements
expression in the ClassAd to add the requirement that “Rank > CurrentRank”
to state that it will only run better machines. The ease of this implementation
shows the usefulness of the structure of Condor—the owner agent can easily
implement a user’s policies for jobs. We expect this feature to be implemented
in the near future.

Note that, although adding the mechanisms to do this is not difficult, it needs
to be done carefully in order to avoid problems. For instance, it is important
to ensure that jobs do not “thrash” between computers, always looking for
greener grass elsewhere. To do this, a job’s requirements either need to specify
features that are not affected by running on a machine, such as total memory
instead of system load, or a job’s requirements need to be updated to restrict a
job from running on machines it has already run on.

4.2 Owner Preemption

If an owner wants to remove a Condor job running on his machine, there are
two ways for it to happen.

First, Condor can automatically preempt jobs. Owners can write flexible
policies that state when jobs should be preempted. For example, an owner
could write a policy that when he begins typing at the keyboard, jobs with a
small image size are suspended and other jobs are preempted. (Condor cal-
culates the image size for each job and puts it into the job ClassAd, so this



Condor and Preemptive Resume Scheduling 143

information is available.) If a job is suspended for more than ten minutes (the
owner has continued typing on the keyboard), the job must be preempted. The
owner can choose to allow or disallow checkpointing before the job is pre-
empted. Of course, various alternative strategies can be used: all jobs could
be suspended, all jobs could be preempted, other criteria can be used to decide
when it should occur and so on. The owner gets to decide how Condor jobs are
allowed to use his resource and Condor enforces his desires.

Second, a user can always request that Condor preempt jobs running on
his machine by running a command. This is not usually necessary because of
Condor’s mechanisms for automatically preempting jobs.

4.3 The Matchmaker: Preemption for Everyone

When the matchmaker is looking for locations to run a job, it can enforce
the desires of the pool administrator by attempting to place jobs in order to
increase the efficiency of the pool or to favor some users instead of others. The
matchmaker also helps owners run jobs that they prefer by preempting other
jobs already running. To understand how both of these work, we will describe
the matchmaking process in a bit more detail than we described it above.

When the matchmaker is looking for a match for a particular job, it examines
the ClassAd for each available computer one at a time, in order. Note, however,
that computers continue to advertise themselves while they are already running
a job, because they are willing to run “better jobs”. This advertising allows
currently running jobs to be preempted.

After checking that a particular job and machine match, the matchmaker
evaluates several expressions:

How does the job rank the machine? Job ClassAds specify a rank expres-
sion that, when evaluated, can differentiate between different machines.
For instance, a job might prefer a faster machine, a machine with more
memory, or a machine belonging to the research group that the job’s
owner is part of. This machine rank allows Condor to meet the user’s
needs.

Is there already a job running on the machine? If so, the matchmaker
evaluates the machine’s rank of the job and compares this rank to the
machine’s rank of the currently running job. If the new rank is higher,
the matchmaker may consider preempting the job. The relies on a rank
expression supplied by the machine’s owner in the machine’s ClassAd
to describe which jobs the owner prefers to be run on his machine. This
job rank allows Condor to meet the owner’s needs.

If there is a job running on the machine, but it does not have a higher
rank than the currently running job, does the owner of the job looking



144 GRID RESOURCE MANAGEMENT

for a match have a higher user priority than the owner of the currently
running job? If so, the matchmaker evaluates the pool administrator’s
requirements for preempting to see if they are true. The pool adminis-
trator may only allow preemption based on user priority when certain
conditions are met, such as not preempting jobs when they have not run
for very long, in order to avoid thrashing. This allows Condor to meet
the system administrator’s needs.

This machine will be a candidate for running a job if:

the job’s rank of the machine is better than any seen so far,

the job’s rank is the same as the previous candidate, but running the job
on this machine would do “less” preemption (either no preemption, or
preemption based on rank instead of preemption based on priority), or

the rank is the same as the previous candidate, and the same kind of
preemption would be performed, but the pool administrator ranks this as
a better preemption than the previous candidate. The pool administrator
may rank a job preemption as better for any reason, but common reasons
might be that a job is smaller (so there will be less network traffic caused
by the preemption) or that the job is being run by a more important user.

If this machine is the best candidate so far, it is used for future comparison
with machines as matching for a job continues.

As described above, this matchmaking algorithm helps enforce the policies
of the pool administrators, the owners of machines, and the users who submit
jobs. For owners of machines, if a machine is running a job but finds another
job that is better (perhaps it is a job submitted by a collaborator of the machine
owner), it can choose to run the new job. Also note that Condor will strongly
prefer not to preempt jobs at all, if it can run a job on an idle machine. For pool
administrators, Condor lets the administrator impose policies on when jobs can
be preempted, and which jobs should be preferentially preempted over other
jobs.

5. CONCLUSIONS

By using all of these different types of preemption together, Condor can
balance the desires of the users, machine owners, and pool administrators.
Preemption is supported throughout Condor by providing both checkpointing
mechanisms and opportunities for preemption. Because of this support, Con-
dor can both take advantage of sporadically available resources such as desktop
computers and can react to problems such as machines that fail while jobs are
running. This flexibility and robustness has been essential to Condor’s success.


