
Resource Management through Multilateral Matchmaking

Rajesh Raman, Miron Livny and Marvin Solomon
University of Wisconsin, 1210 West Dayton Street, Madison WI 53703

{raman,miron,solomon}@cs.wisc.edu

Abstract

Federated distributed systems present new challenges to
resource management, which cannot be met by conventional
systems that employ relatively static resource models and
centralized allocators. We previously argued that Match-
making provides an elegant and robust resource manage-
ment solution for these highly dynamic environments [5].
Although powerful and flexible, multiparty policies (e.g.,
co-allocation) cannot be accomodated by Matchmaking.
In this paper we present Gang-Matching, a multilateral
matchmaking formalism to address this deficiency.

1. Matchmaking

Resource management via Matchmaking occurs as a
four-step process. Entities (i.e., servers and customers) re-
quiring matchmaking services express their characteristics,
constraints and preferences to a Matchmaker in classified
advertisements (Step 1) . Figure 1 shows a workstation’s
classad, where the Constraint and Rank expressions
identify the machine’s constraints and preferences respec-
tively. Attributes of candidate classads are accessed via the
pseudo-attribute other. The Matchmaker employs a very
generic matchmaking algorithm to create matches incorpo-
rating the constraints and preferences of entities (Step 2).
Matched entities are then notified, and their classads dis-
carded (Step 3). Finally, matched entities establish an allo-
cation through a claiming process that does not involve the
Matchmaker (Step 4).

Many complex and useful policies may be defined within
this framework; interested readers are referred to refer-
ence [6] for sophisticated real-world examples.

2. The License Management Problem

Many programs employ software licenses to implement
program use policies. For example, the program may be
valid only to certain users, or on certain workstations or sub-
nets. Software licenses must therefore be managed as first-

[Type = "Machine";
KeybrdIdle= ’00:23:12’; // h:m:s
Disk = 323.4M; // mbytes
Memory = 256M; // mbytes
LoadAvg = 0.042969;
Arch = "INTEL";
OpSys "LINUX";
KFlops = 21893;
Name = "foo.cs.wisc.edu";
Rank = 1G - other.ImageSize;//smaller is better
Constraint= other.Type=="Job" && other.Owner!="rival"

&& LoadAvg < 0.3 && KeybrdIdle>’00:15’
]

Figure 1. Classad describing a Machine

class resources. However, the Matchmaking solution to this
problem requires three participants in the match (i.e., job,
workstation and license), which cannot be accomodated by
conventional (bilateral) Matchmaking.

We consider the following specific problem: A job re-
quires a workstation and a software license to run success-
fully. However, there are a limited number of licenses, each
of which is valid only on certain workstations.

The gang-matching solution to this problem may be eas-
ily generalized to enforce more sophisticated license man-
agement policies, and solve more general co-allocation
problems, but a detailed discussion of these issues is beyond
the scope of this paper.

3. Gang-Matching

The gang-matching extension replaces a regular clas-
sad’s single implicit bilateral match imperative with an ex-
plicit list of required bilateral matches. The classad rep-
resenting the gang-match request for the Job-Workstation-
License example is illustrated in Figure 2.

The Ports attribute is a list that represents the matches
required to satisfy the job. In the gang-matching model, bi-
lateral matching occurs between ports of classads instead
of entire classads themselves. Each port defines a Label
which names the candidate bound to that port, replacing the
fixed other pseudo-attribute. The scope of a label extends
from the port of declaration to the end of the port list. Thus,

[Type = "Job";
Owner = "raman";
Cmd = "run_sim";
Ports = {
[// request a workstation

Label = "cpu";
ImageSize = 28M;
Rank = cpu.KFlops/1E3 + cpu.Memory/32;
Constraint =
cpu.Type=="Machine" && cpu.Arch=="INTEL" &&
cpu.OpSys=="LINUX" && cpu.Memory>=Imagesize;

],[// request a license
Label = "license";
Host = cpu.Name; // cpu name
Rank = 0;
Constraint =

license.Type=="License" && license.App==Cmd;
] }]

Figure 2. A gang-match request

[Type = "License";
App = "sim_app";
ValidHost= "foo.cs.wisc.edu";
Ports = { [Label = "requester";

Rank = 0;
Constraint=requester.Type=="Job"

&& requester.Host==ValidHost
] }]

Figure 3. License Advertisement

expressions in the “license” port can refer to the “cpu” la-
bel but not vice versa. Port labels are private and local to
the hosting classad to prevent namespace pollution and col-
lisions.

Since label scopes extend beyond the port of declaration,
information may be conveyed from one match locality to
another. From Figures 2 and 3, we see that the license’s con-
straint on requester.Host is conveyed to cpu.Name
by the job classad. Thus, the given license is only valid on
the machine “foo.cs.wisc.edu.”

3.1. Creating Gang-Matches

Intuitively, a gang-match is obtained by binding each un-
bound port of a classad to a compatible port of a new classad
until all ports are bound. Our algorithm proceeds by pick-
ing job classads in priority order and then using a top-down,
backtracking algorithm to marshall the required gang. Since
only a single job is served at a time, deadlock is prevented.
Partial evaluation and indexing of both attributes and con-
straints facilitate efficient identification of compatible ports.

4. Related Work

Matchmaking is widely studied in agent systems. The
advertising languages of ACL [2] and RETSINA [7] sup-
port reasoning so that very general behaviors may be de-

scribed and inferred. In contrast to these knowledge-base
representations, classads employ a database representation.

Many resource management systems [8, 4, 3] process
jobs by using resources that are identified explicitly through
a job control language, or implicitly, by submitting the job
to a queue associated with a resource set. Jobs requiring
multiple resources must be submitted to special queues —
there is no general mechanism to marshal a unique mix of
resources. In Globus [1], customers describe required re-
sources in a resource specification language (RSL) based on
a pre-defined schema of the resources database. However,
resources cannot place constraints on requests, precluding
policies such as the Job-License-Workstation example.

5. Conclusions and Future Research

Bilateral matchmaking is implemented and heavily used
in the production releases of the Condor system. The flexi-
bility and generality of this approach in highly dynamic and
distributed environments have been experienced in practice.
We are in the process of integrating gang-matching exten-
sions to the bilateral framework. We are also investigating
optimization techniques to increase the efficiency of identi-
fying gangs, and defining improved protocols for advertis-
ing and claiming.

References

[1] K. Czajkowski, I. Foster, C. Kesselman, S. Martin, W. Smith,
and S. Tuecke. A Resource Management Architecture for
Metacomputing Systems.

[2] M. Genesereth, , N. Singh, and M. Syed. A distributed anony-
mous knowledge sharing approach to software interoperation.
In Proc. of the Int’l Symposium on Fifth Generation Comput-
ing Systems, pages 125–139, 1994.

[3] R. Henderson and D. Tweten. Portable Batch System: Exter-
nal reference specification. Technical report, NASA, Ames
Research Center, 1996.

[4] B. C. Neumann and S. Rao. The prospero resource manager:
A scalable framework for processor allocation in distributed
systems. Concurrency: Practice and Experience, June 1994.

[5] R. Raman, M. Livny, and M. Solomon. Matchmaking: Dis-
tributed resource management for high-throughput comput-
ing. In Proc. of the 7th IEEE Int’l Symp on High Performance
Distributed Computing (HPDC7), July 1998.

[6] R. Raman, M. Livny, and M. Solomon. Matchmaking: An
extensible framework for distibuted resource management.
Cluster: Journal of Software, Networks and Applications,
2(2), 1999.

[7] K. Sycara, K. Decker, A. Pannu, M. Williamson, and D. Zeng.
Distributed intelligent agents. IEEE Expert, pages 36–46, dec
1996.

[8] S. Zhou. LSF: Load sharing in large-scale heterogenous dis-
tributed systems. In Proc. Workshop on Cluster Computing,
1992.

2

