Distributed Policy Management and Comprehension with Classified
Advertisements

Nicholas Coleman, Rajesh Raman, Miron Livny and Marvin Solomon
University of Wisconsin, 1210 West Dayton Street, Madison, WI 53703
{ncoleman, miron, solomon}@cs .wisc.edu, dr_rajesh_raman@yahoo.com

February 11, 2003

Abstract

Distributed systems present new challenges to resource
management, which cannot be met by conventional sys-
tems that employ relatively static resource models and
centralized allocators. Matchmaking paradigms based on
identifying compatible classified advertisements (Class-
Ads) placed by providers and requesters of services work
well in such environments. Condor is a production-quality
distributed system with a distributed policy model that
uses ClassAds for matchmaking. However, due to the dis-
tributed polices and dynamics of such environments, un-
derstanding why some ClassAds are not matched while
others are can be a very complex task. We therefore
present algorithms which not only identify problematic
aspects of a policy, but also suggest modifications.

1 Introduction

A fundamental challenge of distributed systems is collab-
oration in highly dynamic, heterogeneous and untrusted
environments. In such environments the service providers
and requesters which comprise the federation must be
able to specify policies which define the conditions un-
der which they will collaborate. The difficulties involved
in accommodating such a framework include a notation
for specifying such usage policies, a method for discov-
ering entities compatible with the stated policy, a simple
yet flexible and scalable architecture to implement poli-
cies and analysis technologies to comprehend the impli-
cations of policies.

In this paper, we describe distributed policy manage-
ment and comprehension in the context of Condor, a
production-quality distributed high throughput comput-
ing system architected on a federated model, developed
at the University of Wisconsin-Madison. The emphasis
on policy management in Condor is on the specification
and implementation of resource allocation policy. Con-
dor operates in highly dynamic environments character-

ized by distributed management and distributed owner-
ship. Distributed management introduces resource het-
erogeneity: Not only the set of available resources, but
even the set of resource types is constantly changing. Dis-
tributed ownership introduces policy heterogeneity: Each
requester has a unique idiosyncratic notion of what it re-
quires of a provider, and vice versa.

Condor solves these problems by adopting a match-
making paradigm. Users who request machines to run
jobs and administrators who provide these machines to
users are the primary principals. Agents for these princi-
pals send the Matchmaker structures called classified ad-
vertisements (ClassAds), which are declarative descrip-
tions of the principal’s characteristics, constraints and
preferences. The Matchmaker uses a generic policy-
neutral algorithm to discover and notify compatible
agents, who activate a claiming protocol to establish a
collaboration. Thus, in contrast to many conventional
resource management systems, Condor does not impose
a monolithic allocation and scheduling model on the re-
sources in its purview. Instead, users and administrators
independently and dynamically define allocation policies,
and their jobs and machines respectively form dynamic
collaborations when matched, realizing an opportunistic
computing paradigm.

The simplicity and flexibility of this distributed pol-
icy approach has been validated in practice—Condor has
been successfully deployed in both academic and indus-
trial environments as a production quality system. Expe-
rience has shown that the ClassAd-based Matchmaking
framework enables the description of sophisticated poli-
cies to accurately represent the expectations of the sys-
tem’s users. However, we have also discovered that un-
derstanding why certain ClassAds are not matched (while
others are) can be a very complex task in the presence of
complex policies and environment dynamics. In order to
help users understand why ClassAds do not match, and
therefore their jobs do not run, we have developed algo-
rithms which not only identify problems, but also suggest
modifications to the ClassAds.

2 Matchmaking

The underlying ideas of the matchmaking paradigm are
intuitive and very simple. In this section, we briefly de-
scribe the fundamental processes and components of our
matchmaking framework. Interested readers are referred
to [12] for further details.

In our framework, human users who participate directly
or indirectly in the system are called principals, and the
software programs that represent principals in the system
are called agents. Server and customer agents requiring
matchmaking services express characteristics, constraints
and preferences to a Matchmaker (illustrated as Step 1 in
Figure 1). We call these agent descriptions classified ad-
vertisements in analogy to their newspaper counterparts.
The task of the Matchmaker is to detect compatible ad-
vertisements in a generic manner (Step 2), which is per-
formed by checking the constraints specified in the re-
spective advertisements. When compatibilities are dis-
covered, the Matchmaker notifies the respective adver-
tising agents, discards the matched ClassAds and relin-
quishes any further responsibility for the match (Step 3).
Matched agents then establish an allocation through a
claiming process that does not involve the Matchmaker
(Step 4).

Matchmaker
Match Algorithm (2)

3)
Match
Notification

Advertisement (1) (1) Advertisement

Match
Notification

Agent

(Requestor)

(Provider) Claiming (4)

Figure 1: Actions involved in the Matchmaking process

Our matchmaking framework can be naturally decom-
posed into the following components:

1. A language for specifying the characteristics, con-
straints and preferences of agents. Our framework
uses the classified advertisement (ClassAd) language
for this purpose. ClassAds are semi-structured [9]
sets of (name,expression) pairs which may be
thought of as “attribute lists” that describe agents.

2. The Matchmaker Protocol describes how agents
communicate with the Matchmaker to post advertise-
ments and receive notifications.

3. The Matchmaking Algorithm is used by the Match-
maker to create matches. In the abstract, the match-
making algorithm transforms the contents of submit-
ted advertisements and the state of the system to the
set of matches created.

4. Claiming Protocols are activated between matched
parties to confirm the match and establish a working
relationship.

The simplicity, flexibility and expressiveness of the
ClassAd language greatly contributes to the effective-
ness of our Matchmaking framework. Figures 2 shows
a ClassAd describing a workstation in the University of
Wisconsin-Madison Condor [5] pool.1

Most attributes of the workstation (e.g, Name, Mem—
ory, OpSys) describe the machine’s characteristics. The
Requirements and Rank attributes are of special in-
terest to the Matchmaker since these attributes identify
the advertising agent’s constraints and preferences. When
testing the compatibility and preferences of two advertise-
ments A and B, the Matchmaker places the two advertise-
ments in an evaluation environment such that in ClassAd
A, the reference other evaluates to B, and vice versa.
Thus, the workstation in Figure 2 has the following pol-
icy: Jobs belonging to user “riffraff” are never accepted,
and jobs are only serviced when the machine has a low
load average and its console has been idle for at least fif-
teen minutes. Furthermore, jobs with small image sizes
are preferred between 9 a.m. and 5 p.m. Similarly, the job
shown in Figure 3 requires an INTEL workstation run-
ning the LINUX operating system with at least 128 MB
of memory. Among all such workstations, the job prefers
machines with better KFLOPS ratings and more memory.

Many interesting and useful policies may be easily de-
fined within this framework; interested readers are re-
ferred to [13] for more sophisticated examples derived
from the policies of real-world users of the Condor sys-
tem.

3 ClassAd Analysis

Occasionally in Condor a submitted job’s ClassAd does
not match with any machine ClassAds. This situation
occurs when none of the machines meet the submitted
job’s requirements, when the job does not meet the re-
quirements of the machine candidates, or a combination
of these two circumstances. In this paper we will treat the
first two problems seperately and assume that they are not
related.’

Requirements expressions are most commonly in dis-
Jjunctive normal form (DNF) with atoms in the form of

'The Wisconsin Condor pool is currently composed of over 800
nodes, running nine different architecture/operating system combina-
tions. The pool is used continuously as a production system to provide
computation services for several research projects.

2 An example where this is not the case: the job requirements expres-
sion contains the predicate other .Memory >= ImageSize andthe
requirements expressions of the machine ClassAds reference the job at-
tribute ImageSize.

Type = "Machine";

Activity = "Idle";

KeybrdIdle = ’00:23:12’; // h:m:s

Disk = 323.4M; // mbytes

Memory = 256M; // mbytes

State = "Unclaimed";

LoadAvg = 0.042969;

Mips = 104;

Arch = "INTEL";

OpSys = "LINUX";

KFlops = 21893;

Name = "foo.cs.wisc.edu";

Subnet = "128.105.175";

Rank = DayTime () >= 79:00" &&
DayTime () <= "17:00" 2

1/other.ImageSize : 0;
Requirements= other.Type == "Job"

&& other.Owner != "riffraff"

&& LoadAvg < 0.3

&& KeybrdIdle > 700:15’

Figure 2: ClassAd describing a Machine

predicates in which an attribute is related to a value or
constant by means of a comparison relation. An example
of such a predicate is

other.OpSys == "LINUX".

We shall often refer to clauses that are conjunctions of
predicates in this form. An example of such a clause is
the following:

(other.OpSys == "LINUX") &&
(other.Arch == "INTEL") &&
(other.Memory >= 512M)

Thus, requirements expressions are generally disjunctions
of such clauses. We shall assume all requirements expres-
sions are in DNF, as any atom that is not in the form of a
predicate as we have described may be treated as an atom
that can not be modified. Additionally any logical expres-
sion that is not in DNF can be converted to DNF, though
there may be an exponential blowup in the size of the ex-
pression.

3.1 IDon’t Like Anyone

First, we shall examine the case in which no available ma-
chines match a submitted job’s requirements expression.
Using a dating service analogy this situation may be de-
scribed as I Don’t Like Anyone. Depending on one’s point
of view, the problem is either with the requirements ex-
pression of the job, or with the attributes of the various

Type = "Job";
QDate = "Mon Feb 10 10:53:31
2003 (CST) -06:00";
Owner = "raman";
Cmd = "run_sim";
WantRemoteSyscalls = true;
WantCheckpoint = true;
Iwd = "/usr/raman/sim2";
Args = "-Q 17 3200 10";
Memory = 31M;
Rank = KFlops/1E3 +
other.Memory/32;
Requirements = other.Type == "Machine"
&& other.Arch == "INTEL"
&& other.OpSys == "LINUX"

&& other.Memory >= 128M

Figure 3: ClassAd describing a Job

machine ClassAds which are referenced in the job’s re-
quirements. As ClassAd analysis is primarily concerned
with aiding the user who has submitted the job we shall
focus on the job’s requirements expression. First we must
indicate which predicate or combination of predicates in
a given clause is causing the problem. Once the offenders
have been identified we may use the machine ClassAds
to suggest possible modifications to the expression. In
addition we can detect conflicts within the requirements
expression, that is two or more predicates which are in-
compatible. It may well be that the job requirements are
non-negotiable, and may not be relaxed or modified. In
this case the analysis is still pertinent as it provides useful
information about the current pool of available machines.

3.1.1 Suggesting Modifications

On the assumption that the job requirements expression
may be modified, we shall examine how to form useful
suggestions to the user in this regard. Our goal in this end
is to find the least drastic modification to the expression
that results in a successful match. In order to achieve this
algorithmicly we must define a precise metric for the de-
gree to which an expression is modified. One such metric
(M1) is simply the number of predicates in a clause that
are modified or removed. The algorithm employing this
metric turns out to be quite straight forward with a little
bookkeeping; however, the metric does not take into ac-
count how drastically each individual predicate must be
changed. We can define a more robust metric (M2) by
taking into account the difference between the old value
and the new value in the predicate as well as the range of
values for the machine attribute referenced by the predi-
cate.

In either case, we need to define exactly what consti-
tutes a modification to a predicate. For our purposes we
will allow either a modification to the value part of a predi-
cate, or the complete removal of the predicate. If the pred-
icate has an equality operator the value may be changed
to anything as long as it has the same type as the origi-
nal value. In the case of an inequality the value should
only be modified so as to relax the predicate, as a stricter
predicate will get us nowhere. If the operator in question
is a not-equals operator, the only sensible modification is
to remove the predicate all together. Removal is also the
best strategy if the attribute is not defined in any machine
ClassAd.

We begin the algorithm for M1 by generating a table of
boolean values from each clause in the job requirements
expression. For example, given the following clause:

(other.Arch == "ALPHA") &&
(other.OpSys == "SOLARIS") &&
(other.Memory >= 512M)

Our table might look like this:

Machine | other.Arch== other.OpSys == other.Memory | Total
ClassAd “ALPHA” “SOLARIS” >=512M True
1 T F F 1
2 F F F 0
3 F T T 2
4 F F T 1
5 T F T 2
6 F T T 2
7 F F F 0
8 F T F 1

The columns of this table correspond to the predicates
in the given clause and the rows correspond to machine
ClassAds which serve as contexts for the job requirements
expression. In addition we keep a tally of the number of
true values in each row, so we can determine the fewest
number of predicates that must be changed in order for the
entire clause to evaluate to true. To generate our sugges-
tions we find the fewest number of predicates that need to
be modified, and we pick the combination of predicates to
modify that will yield the most machines.

In the table above we see that there are three machine
ClassAds (3, 4, and 5) in which two of the three predicates
in the clause evaluate to true. In these three rows there are
two different configurations: F T T and T F T. There
are two rows with the first configuration, but there is only
one row with the second configuration. In order to match
with the most machines we choose the first configuration,
and thus suggest the removal (or modification) of the first
predicate, (Arch=="ALPHA").

If we are simply suggesting the removal of predicates
from the clause, we need only pick the combination
of predicates with the highest number of corresponding
rows. Removing the offending predicates from the clause
will yield exactly that number of machines. However, if
we are suggesting modifications we must consider the ac-
tual values of each relevant attribute as defined in a given

machine ClassAd. We construct a second table, whose
columns correspond to attributes referenced in the job re-
quirements expression and whose rows correspond to the
machine ClassAds. Continuing with our example, the sec-
ond table is as follows:

Machine Classad Arch OpSys Memory
1 “ALPHA” “LINUX” 256
2 “INTEL” “LINUX” 256
3 “INTEL” “SOLARIS” 1024
4 “SPARC” “LINUX” 512
5 | “ALPHA” “LINUX” 512
6 | “SPARC” “SOLARIS” 1024
7 “SPARC” “LINUX” 256
8 “INTEL” “SOLARIS” 256

Notice that our assumption about selecting the first pred-
icate is no longer true, We can gain only one machine if
we change the value from “ALPHA” to either “INTEL” or
“SPARC.” Therefore we must take into account the actual
values in a given row before tallying how many machines
we will match.

The algorithm using M2 throws out the notion of find-
ing the least number of predicates to be modified, and re-
places it with a composite distance function. The value
part of each predicate represents a point in a set of literal
values and we can calculate the distance from this point
to another point representing a new value. In the case of
numerical values we simply take the absolute value of the
difference between the two points and normalize over the
size of the range of values defined in our machine Class-
Ads. In the case of string or boolean values we assume a
distance of zero between two equal values and a distance
of one between two non-equal values. Clearly some at-
tributes may be harder to change than others, but absent
further information from the user to this effect we can not
take this into account.

For each row (machine ClassAd) in our value table we
sum up the normalized distances. This gives us a measure
of distance between the query represented by the require-
ments expression and any given point corresponding to a
machine ClassAd. A machine ClassAd with the smallest
distance is chosen (perhaps as before by determining the
changes that will yield the most machines), and the val-
ues of the attributes in this ClassAd are used to suggest
modifications to the job requirements expression.

3.1.2 Detecting Conflicts

Another way of looking at the I Don’t Like Anyone situa-
tion is to find predicates which conflict with one another,
that is, predicates that may be satisfied by machines on
their own, but are not satisfied in conjunction. For ex-
ample, a Condor pool may have many machines running
Solaris and several machines with Alpha processors, but
no Alpha machines running Solaris. In this case the ex-
pression

(other.OpSys == "SOLARIS") &&
(other.Arch == "ALPHA")

represents two conflicting predicates, each of which eval-
uate to true in the context of some machine ClassAds, but
in conjunction will always evaluate to false. Alternately,
an expression may contain a conflict which will evaluate
to false regardless of the context it is evaluated in. An
example of such a conflict is the expression

(other.Arch == "ALPHA") &&
(other.Arch == "INTEL")

In this case we have two predicates that may be satisfied
on their own, but together they will never be satisfies as
the Arch attribute can only have one value.

Detecting the former kind of conflict requires the eval-
uation of the individual expressions in the context of ma-
chine ClassAds, whereas the latter kind may be identified
in isolation. To dectect the latter we must separate the
predicates in a clause by attribute reference. For each at-
tribute referenced we convert the predicates to points or
intervals depending on the type of the values. If the in-
tersection of these intervals is empty we have identified a
conflict. The notion of predicates as intervals is discussed
further in the next section. The remainder of this section
is devoted to conflicts which are dependent on the values
of the machine attributes.

To better understand the problem of conflict detection
it is helpful to think of a clause as set of predicates and to
construct a subset lattice, with the full clause on the top
and an empty clause (semantically equivalent to true) on
the bottom. In Figure 4 we see a lattice representation of
the subexpressions of the clause

p1 && P2 && p3 && Ppa

where p; to ps are the predicates. Each subset corre-
sponds to subexpression of the clause generated by re-
moving certain predicates.

A given subset succeeds (marked with a T) if the cor-
responding expression evaluates to true in the context of
some machine ClassAd and fails (marked with an F) oth-
erwise. Any set in the lattice that fails and has no failing
subsets is a Minimal Failing Subexpression (MFS), en-
closed by a dashed oval. Any set that succeeds and has
no succeeding superset is a Maximal Succeeding Subex-
pression (MSS), marked by a solid oval. This terminol-
ogy comes from work in database query analysis [3]. We
have substituted the term subexpression for subquery. The
conflicts we are looking for are those that correspond to
MFSs, that is expressions that always evaluate to false,
but whose subexpressions evaluate to true in some con-
text.

Godfrey [3] shows that in the general case finding all
MFSs is NP-Hard, but proposes a linear time algorithm
for finding one MFS and a polynomial time algorithm for
finding a fixed number k£ of MFSs. However, these algo-
rithms are measured in terms of the number of database

F
{p1, p2, p3, p4}
{pl, p2, p3} {pl.p2,p4} {pl,p3,p4} {p2, p3, p4}

Figure 4: A subset lattice representing subexpressions of
a clause. The solid ovals are MSSs and the dashed ovals
are MFSs.

queries needed to produce the desired information. If we
have a table of boolean values (which can be generated in
m X n time where m is the length of a clause and n is the
number of contexts) we do not need to make a series of
queries as we have all of the information we need.

It can be shown that to generate the set of all MFSs
we may use the set of all MSSs to express the set of all
succeeding subexpressions as a formula in DNF, negate
this formula, convert the result to DNF, and prune out any
logically redundant subformulas. For example in Figure 4
the set of succeeding subexpressions may be represented
by the formula:

(mp3 A =pa) V (—p1 A —p2 A—pa) V (—p1 A —p2 A —ps3)

Its negation is:

(ps V pa) A (p1 VP2 Vpa)A(p1Vp2Vps)

Converting this to DNF, and pruning out redundancies we
get:

(Pr Ap3) V (p1 Apa)V (p2 Apa) V (p2 Ap3) V (p3 A pa)

which represents exactly the set of MFSs. To get the set
of all MSSs we simply collect all of the unique rows of
the boolean table and prune out any rows that do not cor-
respond to MSSs. The main drawback to this process is
that converting the negated formula (which is in CNF) to
DNF may result in an exponential blow up in the size of
the formula. This is not a grave concern, as in practice
these requirements expressions are not very long, at least
with respect to the number of machine ClassAds.

3.2 Nobody Likes Me

The converse of the I Don’t Like Anyone situation is
Nobody Likes Me. Instead of the job ClassAd require-
ments expression rejecting all machines, all of the ma-
chine ClassAd’s requirements expressions reject the job.
Therefore we must examine multiple expressions in DNF
in the context of a single job ClassAd. Our focus is pro-
viding information for the user who submits the job, so
we must look at this in terms of the attributes of the job
ClassAd. Just as we sought to suggest modifications to
the job requirements expression in the previous section,
we shall endeavor to find potential modifications to the
job ClassAd’s attributes. It is even possible that crucial
attributes may be missing from the job ClassAd entirely.

We may look at this situation geometrically, where the
collection of attributes with literal values in a ClassAd
is represented by a point in n-dimensional space where
each dimension corresponds to a single attribute. Clauses
are represened in this space by n-dimentional hyper-
rectangles. The situation described in the previous section
was that of a single hyper-rectangle (the job requirements
expression) and many points (the machine ClassAds) that
did not lie within the hyper-rectangle. The algorithm us-
ing the M2 metric in effect finds the closest point to the
hyper-rectangle and generates suggestions to expand the
hyper-rectangle to include it. Now, given a single point,
we wish to find the closest of several hyper-rectangles. We
shall use this to suggest changes to the job attributes so
that the point may be relocated within the closest hyper-
rectangle, and thus the job ClassAd will be accepted by
some machine ClassAd’s requirements expression.

Figure 5 shows the geometric equivalent of two clauses
where clause 1 is

(ImageSize >= 128M) &&
(MemoryRequirements >= 512M)

and clause 2 is

(ImageSize >= 64M) &&
(MemoryRequirements >= 1024M)

One way to accomplish this would be to apply the al-
gorithm using the M2 metric discussed in the previous
section. This method is sufficent for finding the nearest
point, or smallest overall change to the attributes in the job
ClassAd. However, one might wish for more detailed in-
formation, such as how many machines would match with
the job if the changes described above are made. In order
to be concise we should partition the space covered by
the hyper-rectangles representing machine requirements
expressions into equivalence classes. Each partition cor-
responds to a range of job attribute values which satisfy
the requirements of a unique set of machines.

+00
g
Q
5
£ 3
SIS
()
® =2
oy
8
g
(D)
p=
=
Q
w
64M 128M +00
ImageSize

Clause 1

Figure 5: A geometric representation of two clauses

VA Clause 2

The first step in this process is generating the hyper-
rectangles. If a machine requirements expression con-
tains more than one clause, we create a seperate hyper-
rectangle for each clause, as the union of all such hyper-
rectangles represents the space covered by the entire ex-
pression. Given a clause, we may treat each predicate as
an interval (or set of intervals) in the dimension corre-
sponding to its attribute.

An equals operator in the predicate defines a point, a
not-equals operator defines the union of two open inter-
vals comprising all values except for the value in the pred-
icate, and any other inequality operator defines an open or
closed interval from the value to positive or negative infin-
ity. If there are multiple predicates with the same attribute,
we find the intersection of all of the intervals they repre-
sent. If this intersection is empty, we have found a conflict
as described in the previous section. Since we are dealing
with machine ClassAds, we simply throw out this clause
as it will never be satisfied.

The second step is partitioning along each dimension
seperately, taking care to keep track of which partition
any given machine belongs to. For example, clause 1
(c1) in Figure 5 contains the predicate other.Memory
>= 512M and clause 2 (cy) contains the predicate
other.Memory >= 1024M. This creates two inter-
vals: [512,1024) and [1024, +00) coresponding to the
sets {c1} and {c1, co}. We continue this process until all
clauses in each machine requirements expression are pro-
cessed, then repeat the process for all dimensions. If there
is an attribute that is referenced in some clauses but not
others we simply represent that clause as (—o0, +00), the

set of all strings, or the set of all boolean values depend-
ing on the inferred type of the attribute (determined by the
first value associated with that attribute).

One tricky aspect is dealing with a predicate like
other.Owner != "ncoleman". If the type of the
value were boolean the solution would be trivial, and we
have already defined how a not-equals operator is to be-
have among numerical values. In this case we invent a
special string value called AnyOtherString. Thus if we
have several string values plotted as points in the dimen-
sion corresponding to the Owner attribute, we add the
new clause to the sets associated with any string that is
not "ncoleman" and also add the clause to the set asso-
ciated with AnyOtherString. We shall see that it is impor-
tant to keep track of which strings are not represented by
AnyOtherString in a given dimension.

The third step is constructing the n-dimensional parti-
tions by taking the cross product of the vectors of inter-
vals in each dimension. Given interval [64,128) in the
ImageSize dimension with clause set S1 = {cz} and
interval [1024, 400) in the MemoryRequirements di-
mension with clause set S2 = {c1,c2} we create a rect-
angle defined by [64, 128) x [1024, +00), and associate it
with the intersection of S1 and S2, namely {c2}. What
this means is that job ClassAds with attribute values in
the range defined by [64, 128) x [1024, +00) will match
the machine corresponding to co. We continue the process
with all intervals, and with all dimensions.

If we run into the AnyOtherString placeholder in a di-
mension with string values, we make note of all of the
other string values we have encountered in that dimen-
sion and annotate any hyper-rectangle created using this
instance of AnyOtherString with these values. For exam-
ple, if the dimension corresponds to the Owner attribute
and the other string values are "ncoleman" and "ra-
man", then AnyOtherString means any value for Owner
except "ncoleman" and "raman".

Finally we have a set of hyperrectangles each associ-
ated with a subset of clauses (and therefore a subset of
machines) which partitions the space. We may need to
clean up this set by adjoining hyperrectangles correspond-
ing to identical sets of machines.

We can now not only find the closest range of values
to those in our job ClassAd, we can specify how many
and which machines will match with a job ClassAd with
attribute values in that range. In addition we can present
several alternative value ranges, each with a distance de-
fined by our M2 metric and a set of matching machines.
This extra information opens the door for more complex
policies for determining suggestions based on distance as
well as user preferences for certain machines.

3.3 ClassAd Analysis in Condor

One ideal application of ClassAd analysis (indeed the one
that originally motivated this research) is the Condor user
tool condor_qg, a command line interface to local or re-
mote Condor job queues. Users can view information
about the jobs in a given queue, including the owner, how
long the job has been in the queue, and the status of the
job. A job may have a status of IDLE for various reasons,
including our two scenarios: I Don’t Like Anyone and No-
body Likes Me. For a given job condor_g —analyze
will report how many machines the job rejected as well,
how many machines rejected the job, as well as informa-
tion about priorities and preferences which we will not go
into here.

Using the ClassAd analysis library, we can provide de-
tailed information to supplement the numbers. For exam-
ple, a job with the following requirements expression is
submitted:

(other.Foo == "bar") &&
(other.Memory > 2096) &&
(other.Arch == "INTEL") &&
(other.OpSys == "LINUX") &&
(

other.Disk >= 14)
The results of condor_q —analyze are:

Run analysis summary. Of 839 machines,
839 were rejected by the job’s
requirements
No successful match recorded.

Predicate Matches Suggestion
1 Foo == "bar" 0 REMOVE
2 Memory > 2096 0 MODIFY TO 1911
3 OpSys == "LINUX" 616
4 Arch == "INTEL" 740
5 Disk >= 14 835

In this case there is no machine ClassAd with the Foo at-
tribute, hence the suggestion to remove predicate 1. On
the other hand, there are machine ClassAds where the
Memory attribute is defined, so a modification suggestion
is made for predicate 2.

The above example contained no conflicting predicates.
We now examine the following requirements expression:

(other.OpSys == "SOLARIS") &&
(other.Arch == "ALPHA") &&
(other.Disk >= DiskUsage)

The results of condor_g —analyze are:

Run analysis summary. Of 839 machines,
839 were rejected by the job’s
requirements
No successful match recorded.

Predicate Matches Suggestion
1 Arch == "ALPHA" 4 MODIFY TO
"INTEL"
2 OpSys == "SOLARIS" 120
3 Disk >= 14 838
Conflicts:

predicates: 1, 2

This time we are given the additional information that the
first two predicates conflict with one another.

Finally we examine a case where the job requirements
expression is satisfied by some machine ClassAds, but one
of the job attributes, ImageSize, is too large:

Run analysis summary. Of 837 machines,
807 were rejected by the job’s
requirements
30 rejected the job

Predicate Matches Suggestion
1 Memory > 1024 30
2 OpSys == "LINUX" 618
3 Arch == "INTEL" 741
4 Disk >= 14 836

The following attributes should be added
or modified:

Attribute

Suggestion

ImageSize use a value <= 1220608

4 Related Work

The ClassAd-based matchmaking framework for resource
management has parallels with several fields: generic
matchmaking systems, resource management systems and
constraint database systems.

Matchmaking is widely studied in generic agent sys-
tems. The advertising languages of ACL [2] and
RETSINA [14] support reasoning so that very general
behaviors may be described and inferred. In contrast to
these knowledge-base representations, ClassAds employ
a database representation.

Many resource management systems [15, 10, 4] pro-
cess jobs by using resources that are identified explicitly
through a job control language, or implicitly, by submit-
ting the job to a queue associated with a resource set. Jobs
requiring multiple resources must be submitted to special
queues — there is no general mechanism to marshal a
unique mix of resources. In Globus [1], customers de-
scribe required resources in a resource specification lan-
guage (RSL) based on a pre-defined schema of the re-

sources database. However, resources cannot place con-
straints on requests.

The matching operation is similar to a spatial join be-
tween generalized tuples of a constraint database. How-
ever, matchmaking is different in that it employs a semi-
structured data model, and ClassAds are consumed during
the matching process.

Most of the work relevant to ClassAd analysis is in liter-
ature on databases, particularly on cooperative query an-
swering. In [8] a mechanism called SEAVE is presented
for extracting and verifying presuppositions from queries.
This mechanism identifies queries which result in null an-
swers, then finds more general queries by weakening or
deleting query subexpressions. The result is a set of max-
imally general erroneous presuppositions, which may be
of more value to the user than a simple null answer.

Similar techniques are discussed more formally in [3].
Godfrey discusses identification of minimal failing sub-
queries (MFSs) and maximal succeeding subqueries
(MSSs). Godfrey’s MFSs are analogous to the erroneous
presuppositions generated by Motro’s SEAVE mecha-
nism. The MSSs are the least general generalizations of
the initial query which succeed. An algorithm called ISH-
MAEL is presented which enumerates MFSs and MSSs.
This algorithm is NP-hard for queries of arbitrary length,
but remains polynomial for fixed length queries.

Finally, in [7] the notion of a query difference opera-
tor is introduced to indicate missing information in query
results. The authors discuss a system of resource agents,
brokers, and user agents which resembles the distributed
framework used by condor. The primary focus of this
work is to indicate the incompleteness of query answers.
The query difference operator is used to generate the de-
scription of the set of results covered by the query, but not
covered by the query answer. This set is expressed in re-
lational algebra and can presumably be converted into a
pseudo-English response for the user.

Our work with ClassAd analysis uses similar tech-
niques and notions to provide useful information regard-
ing matchmaking failure. As discussed previously, our
conflict detection algorithm covers similar territory as [3].
One key difference in our research is the semi-structured
data model which unlike the relational model discussed in
the cited papers does not require a fixed schema. Another
important difference is the reflexive nature of ClassAds.
In database terms a ClassAd contains both a query (the re-
quirements expression) and a record (the set of attributes
with literal values). Nevertheless, many of the issues en-
countered in ClassAd analysis are applicable in database
query analysis, web search, or any other field in which
boolean expressions are used as constraints.

5 Conclusions and Future Work

As the matchmaking process is used to deal with larger
groups of resources, and the ClassAd language is used to
represent more complex policies, the need for ClassAd
analysis will only increase. A framework is needed that
will be optimized for the common case (disjunctive nor-
mal form) but be powerful enough to analyze expressions
in any form. It follows that a ClassAd analysis tool must
be very robust, but it must also be usable. If the presenta-
tion of the results of the analysis is not clear and concise
the tool will be of no help to the user. The adjustments to
the condor_qg tool are a preliminary effort to this effect,
but a more comprehensive and interactive ClassAd anal-
ysis interface is needed. For example, we would like to
incorporate input from the user as to which predicates in
the job requirements expression are harder to change than
others.

Not only will the number of available resources in-
crease, but new matchmaking paradigms may be needed
to deal with more complicated resource allocation. Say,
for example, that a job must match with both a machine
and a license for the software used to run the job. Any
of the three principals may have requirements on any of
the others, and thus a more complex matchmaking model
is needed. The Gang Matching model deals with just this
situation and is described in [11].

Even Gang Matching is insufficient to deal with a prin-
cipal requesting an unspecified and possible large num-
ber of resources. Constraints on these resources may be
aggregate, such as total memory across a number of ma-
chines. A Set Matching model is presented in [6] to ad-
dress exactly this situation in the context of Grid resource
selection. Several new set operations have recently been
added to the ClassAd language to facilitate Set Matching.

With new matchmaking models comes a need for more
complex ClassAd analysis. The algorithms described here
are not sufficient for these new paradigms, but they will
provide a firm foundation for future work in this area.

References

[1] K. Czajkowski, I. Foster, C. Kesselman, S. Martin,
W. Smith, and S. Tuecke. A Resource Management
Architecture for Metacomputing Systems.

[2] M. Genesereth, , N. Singh, and M. Syed. A dis-
tributed anonymous knowledge sharing approach to
software interoperation. In Proc. of the Int’l Sympo-

sium on Fifth Generation Computing Systems, pages
125-139, 1994.

P. Godfrey. Minimization in cooperative response
to failing database queries. International Journal of

(4]

(5]

(6]

(7]

(8]

(9]

[11]

[13]

[14]

[15]

Cooperative Information Systems (IJCIS), 6(2):95—
149, June 1997.

R. Henderson and D. Tweten. Portable Batch Sys-
tem: External reference specification. Technical re-
port, NASA, Ames Research Center, 1996.

M. J. Litzkow and M. Livny. Experience with the
Condor Distributed Batch System. IEEE Workshop
on Experimental Distributed Systems, 1990.

C. Liu, L. Yang, I. Foster, and D. Angulo. Design
and evaluation of a resource selection framework for
grid applications. In Proceedings of the 11th IEEE
International Symposium on High Performance Dis-
tributed Computing (HPDC11), July 2002.

M. Minock, M. Rusinkiewicz, and B. Perry. The
identification of missing information resources by
using the query difference operator. Technical re-
port, MCC, April 1999.

A. Motro. SEAVE: A mechanism for verifying user
presuppositions in query systems. ACM Transac-
tions on Office Information Systems, 4(4):312-330,
October 1986.

S. Nestorov, S. Abiteboul, and R. Motwani. Infer-
ring Structure in Semistructured Data. In Proceed-
ings of the Workshop on Management of Semistruc-
tured Data, Tucson, Arizona, May 1997.

B. Clifford Neumann and S. Rao. The prospero re-
source manager: A scalable framework for proces-
sor allocation in distributed systems. Concurrency:
Practice and Experience, June 1994.

R. Raman. Matchmaking Frameworks for Dis-
tributed Resource Management. PhD thesis, Uni-
versity of Wisconsin, Madison, 2000.

R. Raman, M. Livny, and M. Solomon. Match-
making: Distributed resource management for high-
throughput computing. In Proceedings of the Sev-
enth IEEE International Symposium on High Perfor-
mance Distributed Computing (HPDC?7), July 1998.

R. Raman, M. Livny, and M. Solomon. Match-
making: An extensible framework for distibuted re-
source management. Cluster: Journal of Software,
Networks and Applications. (Special Issue on High
Performance Distributed Computing), 2(2), 1999.

K. Sycara, K. Decker, A. Pannu, M. Williamson, and
D. Zeng. Distributed intelligent agents. IEEE Ex-
pert, pages 36-46, dec 1996.

S. Zhou. LSF: Load sharing in large-scale heteroge-
nous distributed systems. In Proc. Workshop on
Cluster Computing, 1992.

