Condor - A Hunter of Idle Workstations

Michael J. Litzkow, Miron Livny, and Matt W. Mutka

Department of Computer Sciences
University of Wisconsin
Madison, WI 53706

ABSTRACT

This paper presents the design, implementation, and per-
formance of the Condor scheduling system. Condor operates
in a workstation environment. The system aims to maximize
the utilization of workstations with as little interference as pos-
sible between the jobs it schedules and the activities of the peo-
ple who own workstations. It identifies idle workstations and
schedules background jobs on them. When the owner of a
workstation resumes activity at a station, Condor checkpoints
the remote job running on the station and transfers it to another
workstation. The system guarantees that the job will eventu-
ally complete, and that very little, if any, work will be per-
formed more than once. The system has been operational for
more than five months. In this paper we present a performance
profile of the system based on data that was accumulated from
23 stations during one month. During the one-month period,
nearly 1000 jobs were scheduled by Condor. The system was
used by heavy users and light users who consumed approxi-
mately 200 CPU days. An analysis of the response times
observed by the different users is a clear display of the ability
of Condor to protect the rights of light users against heavy
users who try to monopolize all free capacity. Since a user of
Condor has to devote some local capacity to support the
remote execution of his/her jobs, the effectiveness of the
remote scheduling system depends on the amount of this capa-
city. We show that this overhead is very small. On the aver-
age, a user has to sacrifice less than one minute of local CPU
capacity to acquire a day of remote CPU capacity. Condor has
proven to be an extremely effective means to improve the pro-
ductivity of our computing environment.

1. Introduction

Workstations are powerful machines capable of executing
millions of instructions each second. In many environments,
individuals are allocated such stations to guarantee fast
response to processing demands. In such cases the workstation
becomes a private resource of the user who controls access to
it. In most cases, the resources of the workstation are under
utilized. The processing demands of the owner are much
smaller than the capacity of the workstation he/she owns.
However, very often some of the users face the problem that

1 This research was supported in part by the National Science Founda-
tion under grants MCS81-05904 and DCR-8512862 and by a Digital Equip-
ment Corporation External Research Grant.

CH2541-1/88/0000/0104$01.00 © 1988 IEEE

104

the capacity of their workstations is much too small to meet
their processing demands. These users would like to take
advantage of any available capacity they can access that can
support their needs. Modern processing environments that
consist of large collections of workstations interconnected by
high capacity networks raise the following challenging ques-
tion: can we satisfy the needs of users who need extra capacity
without lowering the quality of service experienced by the
owners of under utilized workstations? In other words, can we
provide a high quality of service in a highly utilized network of
workstations? The Condor scheduling system is our answer to
this question. The Condor system schedules long running
background jobs at idle workstations. In this paper we present
the design and implementation of Condor and portray its per-
formance. A performance profile based on data accumulated
from 23 VAXstation II® workstations over a one-month period
is presented along with an analysis of our experience with the
usage of the system over the past five months.

A number of researchers have been exploring ways of
effectively utilizing computing capacity in networks of works-
tations [1-8]. This work has been conducted in three areas,
which are the analysis of workstation usage patterns, the design
of remote capacity allocation algorithms, and the development
of remote execution facilities. In the first area of research,
workstation usage patterns and their availability as sources of
remote execution have been analyzed [1]. An analysis of a
group of workstations over 5 months showed that only 30% of
their capacity was utilized. The study showed that not only
was a large amount of capacity available during the evenings
and on weekends, but also during the busiest times of the day.
Available intervals were often very long. This makes worksta-
tions good candidates to serve as a source of remote processing
cycles.

The second area of research is the exploration of algo-
rithms for the management of idle workstation capacity [2]. In
a system where long running background jobs are scheduled on
idle workstations, it has been observed that some users try to
acquire all the capacity available, while others only acquire
capacity occasionally. Those who request large amounts of
capacity should be granted as much as possible without inhibit-
ing the access to capacity of other users who want smaller
amounts. The Up-Down algorithm presented by Mutka and
Livny [2] was designed to allow fair access to remote capacity
for those who lightly use the system in spite of large demands

® VAXstation Il is a trademark of Digital Equipment Corporation.

by heavy users.

The development of remote execution facilities that allow
jobs to be executed on idle workstations is the third area of
research. A number of papers have reported on the develop-
ment of systems that allow for remote execution of jobs on idle
workstations. These include the NEST project [3], the V-
Kernel [4], the Process Server [5], the Remote Unix (RU) facil-
ity [6], the process migration facility of Sprite [7], and the
Butler [8] system. With the exception of the Remote Unix
facility, these systems were not specifically designed to
remotely execute long jobs. For example, when a user
reclaims a station in the Butler system, the remote job that is
currently running on the station is terminated and all inter-
mediate results are lost. The remote execution facilities of
NEST, V-Kernel, Process Server, and Sprite enable job move-
ment during its execution but do not save intermediate results
if there is no place to move the job. If a user at a remote site
terminates a foreign job running on the station, the foreign job
loses all the work it accomplished up to this point. In our
department, we use the Remote Unix (RU) facility to execute
remote jobs. The RU facility is ideally suited for backgrounds
jobs that are computationally intensive and run for long periods
without any interaction from users. An unique feature of this
facility is checkpointing. Checkpointing is the saving of the
state of a program during its execution so that it can be res-
tarted at any time, and on any machine in the system. This
enables successful completions of jobs that consume months of
CPU capacity. When a remotely executing program is stopped
due to the shutdown of a remote workstation, or when a pro-
gram is intentionally terminated by the remote workstation’s
owner, the program is resumed from its most recent check-
point.

This paper presents results that extend previous work with
respect to the exploration of effective means of utilizing idle
workstation capacity. Previous research of scheduling algo-
rithm design and remote execution facilities are merged into a
system where actual user jobs are profiled and the system is
measured. The Condor system combines the RU remote exe-
cution facility with the Up-Down algorithm for the fair assign-
ment of remote capacity. Our study covers one month in which
users’ jobs were profiled and the system utilization was moni-
tored. We show the pattern of service demands of users and
the quality of service experienced by the users.

A new performance measure called leverage is intro-
duced. It is the ratio of the capacity consumed by a job
remotely to the capacity consumed on the "home" station to
support remote execution. When little local capacity is needed
to support the execution of remote jobs, the leverage of the
jobs is large. A job with a small leverage should be executed
locally since it consumes a great amount of local capacity to
support its remote execution. We observed the leverage of
jobs executing on our system to quantify the benefit the Condor
system provided to its users.

Section 2 discusses the design issues of the Condor sys-
tem and the decisions made to resolve the issues. Included in
section 2 are some of the implementation details. Section 3
provides a performance profile of the system and the impact
remote execution has on local workstations. In section 4, we
present a discussion of issues that were brought to light due to
our implementation. Plans for future work are presented in
section 5 and conclusions are given in section 6.

105

2. System Design

There are over 100 VAXstation II workstations in our
department. Since less than 30% of their capacity is utilized
[1], a system has been designed and implemented to execute
jobs remotely at idle workstations. Within our department
there are many users working on problems that need large
amounts of computing capacity. A few example problems
include studies of load-balancing algorithms [9], simulation of
real-time scheduling algorithms [10], studies of neural network
learning models [11], and mathematical combinatorial prob-
lems [12]. These jobs typically require several hours of CPU
time and little interaction with their users. The Condor system
is designed to serve these users by executing their long running
background jobs at idle workstations. To make our system
attractive to these users, several issues must be addressed.
First, the placement of background jobs should be transparent
to users. The system should be responsible for knowing when
workstations are idle and users should not need to know where
their remote jobs execute. Second, if a remote site running a
background job fails, the job should be restarted automatically
at some other location to guarantee job completion. Third,
since a workstation can serve as a source of remote cycles for
others when it is not used by its owner, users expect to receive
fair access to cycles when remote capacity is wanted. Fourth,
the mechanisms implementing the system are expected to con-
sume very little capacity. Otherwise users would not allow
their workstations to be part of such a system if it interferes
with their local activity.

This paper presents a design and evaluation of a real sys-
tem that faces these issues. We will describe our remote job
execution and recovery facilities, the method of job schedul-
ing, and the system performance. We begin with a description
of the structure of the scheduling system.

2.1. Scheduling Structure

The remote job scheduling structure should be transparent
to the user. When users have background jobs to run, they
should not need to request the remote machines explicitly or
know on which machines their jobs are placed. A wide spec-
trum of scheduling structures could provide this objective. On
one end of the spectrum, a centralized, static coordinator would
assign background jobs to execute at available remote worksta-
tions. The coordinator would gather system information in
order to implement the long-term scheduling policy that the
system administrator has chosen. It would know which jobs
were waiting and which were executing, and the location of
idle stations. At the other end of the spectrum is a distributed
approach. The assignment of available processors is accom-
plished by each workstation cooperating to conduct a schedul-
ing policy. This approach requires negotiations among the
workstations to resolve contentions for available processors.

Both the centralized and the distributed approaches have
well known advantages and disadvantages. The centralized
approach can efficiently decide which job is next granted a
remote processor because each job submitted is registered with
the central coordinator. The central location knows both the
number of idle workstations and the number of jobs demanding
service. The important duties of this location require that it is
protected from users so that they do not have direct access to it.
Direct access compromises the security of the scheduling pol-

icy. A system with a static central coordinator that keeps all
jobs’ state and workstation availability information is not
easily extendible and is critically subject to failure. If the cen-
tral coordinator fails, all scheduling in the system would cease.
In the distributed scheduling system, each requesting worksta-
tion does its own searching for idle workstations. Message

exchanges among contending workstations would be required
to place jobs at idle workstations. This is less efficient than a
centralized scheme when deciding which job should be next
allocated a processor. However, the distributed scheduling
approach is not subject to failure if a single station quits
operating.

We have decided to follow an approach for structuring
the background job scheduler that lies between a centralized,
static approach and the fully distributed approach. This
approach uses the efficiency of scheduling with a central node
to avoid the overhead of messages to decide which worksta-
tions should be allocated available capacity. Each workstation
keeps the state information of its own jobs and has the respon-
sibility of scheduling them. A workstation knows the relative
priority of the jobs and schedules them accordingly. The cen-
tral coordinator merely assigns capacity to workstations which
they use to schedule their own jobs.

Figure 1 illustrates our approach to structuring the Condor
system. Each workstation has a local scheduler and a back-
ground job queue. The jobs that the user submits are placed in
the background queue. One workstation holds the central coor-
dinator in addition to a local scheduler and background job
queue. In our implementation, every two minutes the central
coordinator polls the stations to see which stations are avail-
able to serve as sources for remote cycles, and which stations
have background jobs waiting. Between successive polls, each
local scheduler monitors its station to see if it can serve as a
source of remote capacity. If a background job is running on
the workstation, the local scheduler checks every %2 minute to
see if the background job should be preempted because the
local user has resumed using the station. When local activity is
detected, the local scheduler will immediately preempt the
background job so that the user can have the workstation’s
capacity under his/her control. The central coordinator allo-
cates capacity from idle workstations to local schedulers on
workstations that have background jobs waiting. A local
scheduler with more than one background job waiting makes
its own decision of which job should be executed next.

Our structure follows the principle that workstations are
autonomous computing resources and they should be managed
by their own users. This also helps to keep the responsibilities
of the coordinator simple. Simplicity is important so that a
central site is not required to maintain a large amount of infor-
mation about each workstation. This allows the system to be
extendible to a large number of workstations and eases the
required recovery when the centralized coordinator fails.
Local schedulers are not affected if a remote site discontinues
service. If the site on which the coordinator is executing fails,
remotely executing jobs initiated and executing on other
machines are not affected. Only the allocation of new capacity
to requesting users is affected. Since the coordinator has few
duties, its recovery at another site is simplified in relation to a
fully centralized strategy. To balance the burden of coordina-
tion, the central coordinator can be moved to other locations.
However, we have observed that the coordinator contributes

106

g

~Al

Local
Scheduler

TTTT

[RARRE}

|

Figure 1: The Condor Scheduling Structure.

less than 1% to the CPU consumption of a workstation so that
there is probably little need to move the coordinator.

In order to schedule jobs remotely, a remote execution
facility is needed. Since our workstations operate under the
Berkeley BSD 4.3 Unix® operating system, we decided to have
a remote execution facility that is compatible with our local job
execution facility. This led to the development of the Remore
Unix (RU) facility [6].

2.2. The Remote Unix (RU) Facility

Remote Unix turns idle workstations into cycle servers.
When RU is explicitly invoked, a shadow process runs locally
as the surrogate of the process running on the remote machine.
Any Unix system call made by the program on the remote
machine invokes a library routine which communicates with
the shadow process. A message indicating the type of system
call is sent to the shadow process on the local machine and can
be viewed as a remote procedure call.

When someone resumes using a workstation that is exe-
cuting a remote job, the job must be stopped. If the state of the
stopped job is not preserved, as is the case in the Butler system
[8], all the work accomplished by the job is lost. Because
background jobs can require several hours of CPU, it is impor-
tant that the system restart background jobs without losing all
the work accomplished so far. In the Condor system, the inter-
mediate state from which background jobs can be restarted is
made possible by the checkpointing feature of RU.

2.3. Checkpointing

When a job is removed from a remote location, RU
checkpoints it. The checkpointing of a program is the saving
of the state of the program so that its execution can be res-
tarted. The state of an RU program is the text, data, bss, and
the stack segments of the program, the registers, the status of
open files, and any messages sent by the program to its shadow
for which a reply has not been received. In our system, we do
not need to save messages since checkpointing is deferred until
the shadow’s reply has been received. The text of the program
contains the executable code, the data segment contains the ini-
tialized variables of the program, and the bss segment holds the
uninitialized variables. It is assumed that there is no self-

® Unix is a trademark of AT&T Bell Laboratories.

modifying code in the program, and therefore the text segment
is expected not to be essential in a checkpoint file. However,
programs can execute for a very long time, perhaps months. A
user might want to modify a program that has its executable
file running as an RU job. For this reason, we save the text
segment. Otherwise, the user would have to make sure that the
new program’s executable file is given a new name when there
is an old version running.

2.4. Fair Access to Remote Cycles

Once a scheduling structure has been established, we need
to understand the characteristics of the users in order to design
algorithms that meet their needs. We have observed that the
user community can be divided into heavy users and light
users. Heavy users try to consume all available capacity for
long periods, while light users only consume remote cycles
occasionally. In order to serve all users fairly, we need to take
into account their workload. Otherwise, heavy users might
inhibit light users’ access to remote cycles.

To provide fair access to resources, we manage available
capacity with the Up-Down algorithm [2]. This algorithm
enables heavy users to maintain steady access to remote cycles
while providing fair access to cycles for light users. The algo-
rithm trades off the remote cycles users have received with the
time they have waited to receive them by maintaining a
schedule index for each workstation. When remote capacity is
allocated to a workstation, the index is increased. When a
workstation wants remote capacity, but is denied access to it,
the index is decreased. The priority to remote cycles of a
workstation is determined by the value of its index. Initially
the index for each station is zero. The indexes of the worksta-
tions are updated periodically. Every two minutes the coordi-
nator will check if any stations have new jobs to execute. If a
station with higher priority has a job to execute, and there are
no idle stations, the coordinator preempts a remotely executing
job from a station with lower priority. After the preempted job
is checkpointed, the newly available capacity will be assigned
to the high priority station. Further details of the algorithm and
an evaluation of its performance is given in [2].

The implementation of the system has given us an oppor-
tunity to measure its performance under a real workload. It
enabled us to measure the costs and benefits of providing a
background scheduling service. The next section presents the
detailed measurements we obtained from the system when it
was used by members of our department.

3. Performance

The performance results we report are from preliminary
observations of the Condor system. We present details of the
way the system was used and analyze the quality of service it
provided. This analysis includes the wait ratios users endure
when they submit background jobs and the cost suffered by
users at their local workstation to support remotely executing
jobs. Our results are based on observing 23 workstations for
one month. Table 1 summarizes the activity of users during
that time period. It presents the number of jobs each user sub-
mitted, and the average job service demand per user. User A
accounted for most of the consumption of remote capacity.
This heavy user often tried to execute as many remote jobs as
there were workstations in the system. The other users of Con-
dor consumed capacity occasionally and can be classified as

107

light users.

The service demand of jobs submitted to the system were
typically several hours in length. With the exception of User
D, all users had an expected demand per job that was greater
than 1 hour. Figure 2 shows the cumulative frequency distri-
bution of jobs served by the system. For each hour i, the curve
shows the percentage of jobs whose service demand was less
than i hours. The average service demand was about 5 hours.
The median service demand was less than 3 hours because
shorter jobs were submitted more frequently than longer jobs.

Jobs arrived at the system in batches. Figure 3 depicts the
queue length of jobs in the system on an hourly basis. The dot-
ted line represents the queue length of light users. Jobs in ser-
vice are considered part of the queue. The difference between
the total and light users’ queue lengths is the heavy user’s
queue length. The figure shows that the heavy user kept more
than 30 jobs in the system for long periods.

We evaluated the quality of service users receive for the
remote execution of their jobs. One measure of the quality of
service is the wait ratio which is the ratio between the amount
of time a job waits for service and its service time. The aver-
age of observed wait ratios of remotely executed jobs is illus-
trated in Figure 4. The solid line is the average wait ratio of all
jobs, whereas the dashed line is the wait ratio of the light users.
Note that in most cases light users did not wait at all. Their
wait ratio is very small. The average wait ratio results are
dominated by the wait ratio of the heavy user who waited
significantly more. This is due to the Up-Down algorithm

User | Number % of Demand/Job Demand % of
of Jobs Jobs (in Hours) (in Hours) Demand
A 690 75 6.2 4278 90
B 138 15 2.5 345 7
C 39 4 2.6 101 2
D 40 4 0.7 28 0.6
E 11 1 1.7 19 0.4
Total 918 100 5.2 4771 100

Table 1: Profile of User Service Requests.

80
P
e
T
¢ 604
e
n
t
a
g
e 40
6]
f
J 20
o
b
5
0
0 2 .4 6
Service Time (in hours)

Figure 2: Profile Of Service Demand.

40
Q 30 Total
u
e
u
e
L 20
e
n
8
t .
10 Light Users
\
0 —L
1 15 30
Days In Month
Figure 3: Queue Length.
3
Average
— — — — Light Users
W
a 21
i
t
R
a
t
i 1
o
1
L——- L_I L
0 {
0 2 4 6
Service Time (in hours)

Figure 4: Average Wait Ratio.

giving steady access to light users without allowing heavy
users to dominate the system. Light users obtained remote
resources regardless of whether the heavy users increased or
decreased their load. Requests of the light users were typically
small enough that available capacity could be immediately
allocated to them. The Up-Down algorithm allocated remote
capacity to light users and preempted the heavy user. When
the light users’ jobs were completed, the heavy user’s jobs
were resumed to consume available capacity. Typically the
heavy user was allocated some capacity since the light users’
requests were not large enough to consume all available capa-
city.

We measured the amount of extra capacity the 23 works-
tations provided to Condor users. During the observed period,
12438 hours were available for remote execution, of which
4771 machine hours of capacity was consumed by the Condor
system. Note that almost 200 machine days of capacity that
otherwise would have been lost were consumed by the Condor

108

1.0 Condor + Local Activi
0.8
U
t
i
! oos
i
z
a
t
i 04
o
n WA
0.2 J / ‘/
- |
! \/Vj . N
f Local Activity /
0.0
1 15 30
Days of Month

Figure 5: Utilization of Remote Resources.

1.0

0.8

V.

0.6 {Condor + Local Activi

EEEE Y=

|
044 I q [‘|
i { ﬁjl | / iV
' V\U’VI\ 1 _/ | i l
U | \
02 f \)) W v
Local Activity
0.0
Mon Tues Wed Thur Fri
ONE WEEK

Figure 6: Utilization for One Week.

system! Figure 5 shows how the utilization varied over time.
The solid line is the system utilization which is the combina-
tion of local activity and remote executions, whereas the
dashed line shows the local workstation utilization. Local
activity remained low for the month period. On the average,
local utilization for the month was 25%. However, due to the
Condor system, we observed long periods that all workstations
were utilized. The Condor system identified available capacity
and allocated it to its users.

Each day of the month the amount of available capacity
in the system varied. Figure 6 gives a closer view of the utili-
zation of the system over one working week (Monday through
Friday). Notice the peaks of local activity during the day, and
how the capacity decreased in the evenings. The range of local
utilization generallv varied from 20% in the evenings and
nights to 50% for short peak periods in the afternoons. Figure
7 presents the queue length of light users and the total queue
length for that week. Notice the sharp rises in the queue length

ococO

EI - N-N N

100 | LightUsers
ST,
0 11\,\1, 1\
Mon Tues Wed Thur Fri
ONE WEEK

Figure 7: Queue Lengths for One Week.

0.8
¢ |
h
e
c
k 06
P
o
i
n
t
s 04
e
r

0.21
H
o
u
r

0.0

0 2 4 6
Service Time (in hours)

Figure 8: Rate Of Checkpointing.

which represents batch arrival of jobs. Much of the time dur-
ing the week the queue length of the heavy user was larger
than the number of machines available.

3.1. Impact on Local Workstations

The implementation of remote execution facilities should
be efficient so that users at workstations need not use much of
their local capacity to support remote executions. We studied
the impact the remote execution facility has on users at their
workstations. A user has to devote some local capacity to sup-
port the placement and checkpointing of remote jobs and the
execution of system calls. In addition, a local scheduler and
the coordinator consume some resources.

It is important to keep the capacity consumed by the coor-
dinator and each local scheduler small since some users might
rarely use the remote execution facility. Our observations
show that these costs are indeed small. The local scheduler of
a station with background jobs running has been observed to
consume less than 1% of a station’s capacity. -This capacity is

109

independent of the size of the system. The consumption of
capacity by the coordinator has been observed to be less than
1% of a workstation’s capacity as well. The size of the system
is expected to affect the amount of capacity consumed by the
coordinator. We have observed a system with as many as 40
workstations. Even with this system size, the coordinator con-
sumes less than 1%. This leads us to believe that a coordinator
can manage as many as 100 workstations with only a small
impact on the workstation that hosts it.

‘We measured the costs that remotely executing jobs bring
on their home workstations. To support the remote execution
of background jobs, the home workstation has to transfer jobs
to remote sites, checkpoint them when they are preempted, and
execute their system calls. This support can have a significant
impact on the local workstation. The costs associated with this
support depend on the costs and rates of these activities.

The capacity required to place and checkpoint a remote
job depends on the size of the job. Placing and checkpointing
jobs consume approximately 5 seconds per megabyte of the
checkpoint file. We observed that the average checkpoint file
size was ¥ megabyte. Therefore, the average cost of place-
ment and checkpointing was approximately 2V seconds.

The rate at which jobs were checkpointed after they were
initially placed is shown in Figure 8. This rate is the number
of times per hour of CPU that a remotely executing job is
moved from one location to another. Jobs are checkpointed
when the location at which they have been running becomes
unavailable for remote execution. In addition, jobs can be
checkpointed when the coordinator decides that one user
requesting remote cycles has priority over another user. The
rate of checkpointing was relatively steady over the range of
service demands, with the exception of short jobs. The reason
that longer jobs have a lower rate of checkpointing can be
explained in terms of the local usage patterns of workstations.
When jobs are preempted due to local user activity, they will
be placed at another remote location if one is available. Since
local workstation activity is not uniform across the system,
some workstations tend to be available for short periods, and
other workstations tend to be available for much longer periods
[1]. Long jobs have a lower checkpoint rate because eventu-

20001
1500
—

L
€
v
e
N 1000
a
8
e

5001 l

0
0 2 . 4 6
Service Time (in hours)

Figure 9: Remote Execution Leverage.

ally.r t'hey are placed at a workstation that experiences no local
activity.

System calls by a remotely executing job can have a
signiﬁcam impact on a local workstation. The average capa-
city consumed on a VAXstation II to support a remote job exe-
cuting a system call is approximately 10 msec. This is 20
times the cost of a Unix system call. Programs executing large
numbers of system calls, such as reads or writes, in proportion
to other instructions would be better off if they were executed
locally instead of remotely. For a remotely executing job with
an extreme number of system calls, a local workstation sup-
porting the remote system calls would consume more capacity
than the amount of useful work accomplished at the remote
site.

We define a new performance measure called leverage to
compare the amount of effort a local workstation must endure
to benefit from having useful work conducted remotely. The
leverage of a remote job is defined as the amount of remote
capacity consumed to execute a job divided by the amount of
local capacity consumed to support remote execution. The
local capacity is the combination of capacity used to support
Placcmem, checkpointing, and system calls. If more capacity
is consumed locally to support remote executions than what is
actually accomplished remotely, the leverage of the job is less
than 1. Figure 9 shows a profile of the leverage of jobs. The
average leverage was approximately 1300. This means for
every 1 minute of local capacity consumed to support remote
execution of jobs, nearly 22 hours of remote capacity was
received by the users! Longer jobs had a larger leverage than
shorter jobs. This is because the rate of checkpointing for short
jobs was higher than for long jobs, and the amount of
input/output for the short jobs was relatively the same as that
of long jobs. Nevertheless, the leverage for jobs with service
demands less than 2 hours averaged approximately 600. This
means that even a short job with only a service demand of 1
hour required less than 6 seconds of local capacity to support
remote execution.

4. Discussion

The implementation of the Condor system brought a
clearer understanding of several issues. Many of these issues
relate to the nature of background jobs and the large amount of
memory needed for their remote execution. For example, if a
job is to be executed remotely, it must be placed on the remote
station’s disk. Because users of workstations often do little to
manage their own disk space, users let their disk become full.
When a disk is full, a remote job cannot be placed on the
workstation for remote execution. Even if a workstation is idle
so that its processor is available for executing remote jobs, the
disk might be full so that no remote job can execute there. The
coordinator must know not only which workstation’s processor
is available, but has to keep track of available disk space.

The issue of disk space affects users in another way.
Users often like to execute many background jobs at a time. If
users do not have much local disk available, they will be res-
tricted on the number of background jobs that they can execute
simultaneously. The restriction occurs since checkpoint files
of remotely executing background jobs are kept locally. Space
can be saved if disk servers from additional hardware are
implemented to store checkpoint files. Another solution to the
disk space problem is to share text segments of programs. This

110

is effective since users often submit several occurrences of the
same job with only different parameters to evaluate. An exam-
ple is when users submit simulation programs to the system.
Only one copy of the text segment might be needed for several
job executions.

Because placing and checkpointing remote jobs has an
impact on a local workstation and the network, our implemen-
tation does not place or checkpoint several jobs simultane-
ously. We have noticed that if several machines are available,
and users have several background jobs waiting for service, the
performance of the local machine is severely degraded if all
jobs are placed at the same time. Our implementation places
one job every two minutes to distribute over time the impact of
this activity on local workstations and the network.

Our design philosophy has been to ensure that the Condor
system does not interfere with users and their local activity.
Remote jobs are only executed when there is no local activity.
However, one element of our implementation differs with our
design philosophy. When local activity resumes at a worksta-
tion where a foreign job is running, the foreign job is stopped
on the station and is kept there to see if the workstation will
soon be available. If the workstation does not become available
within 5 minutes, the job will be checkpointed and moved from
the location. The strategy has worked well since many of the
workstations’ unavailable intervals are short. However, it does
not completely follow a model where users reclaim all local
resources as soon as they return to their workstations. The
CPUs are immediately returned, but disk space consumed by
remote jobs is not released until the checkpoint files are
moved. If a user has little local available disk space, the

checkpoint file might interfere with local activity until the file
is moved. We consider a modification to our strategy so that

checkpoints of remote executions are periodically taken.
When a workstation’s owner resumes activity at a location exe-
cuting a remote job, the new strategy is to kill the job immedi-
ately. This minimizes the interference a remote job has with
the owner of a workstation. The only work lost is that between
the job’s most recent checkpoint and the time it was ter-
minated.

5. Further Work

Our work is the first step in exploring design and imple-
mentation issues regarding background job scheduling in a net-
work of workstations. There are several performance evalua-
tion and implementation issues which we intend to study
further . Some of the example issues are:

(1) Other work [1] has found that workstations with long
available intervals tend to have their next available inter-
val long. Workstations with short available intervals tend
to have their next available intervals short. This correla-
tion means that the coordinator could choose sources of
remote cycles on the basis of the history of workstation
availability. We intend to study the impact on the number
of preemptions long running jobs suffer when we use
knowledge of past available interval lengths.

(2) We are considering an implementation of Condor which
will allow the execution of parallel algorithms. The
model of interprocess communication will be communi-
cating sequential processes as proposed by Hoare [13].
Depending on the availability of multiple remote
machines, multiple cooperating processes may share a

remote site or be placed on multiple sites.

(3) The implementation of a reservation system would
improve the computing service available to users. Reser-
vations guarantee computing capacity for users in
advance in order to conduct experiments in distributed
computations. Many important issues are open on how to
manage a reservation system in which workstations
become available whenever their owners are not using
them.

(4) We are porting our system to the SUN [14] workstations.
This system means that a background job compiled into
two different binary files could be executed at either a
VAXstation II or SUN workstation. This system leads to
interesting scheduling questions regarding at which
workstation should a job be placed. The decision of place-
ment should take into account the usage patterns of each
type of workstation. Once a job has been placed on one
type of workstation, the job could not be moved to the
other type of workstation without losing all the work done
on the first type of workstation.

6. Conclusions

Networks with workstations have increased in great
numbers in recent years. These networks represent powerful
computing environments that were previously only available to
users at institutions with supercomputers. With the implemen-
tation of the Condor system, users can expand their capacity to
that of the entire computing network. This paper discusses a
system that effectively utilizes idle workstation capacity and
presents a profile of its performance. The results are from a
one-month observation of the system where actual users
obtained capacity from workstations that otherwise would have
been idle.

Condor has proven to be an extremely effective means of
improving the productivity of our computing environment. For
a system of 23 workstations, large amounts of capacity were
observed to be available for remote execution. About 75% of
the time the workstations were available as sources of remote
cycles. Our system caused the workstations to be fully utilized
over long periods of time. Over a one-month period, users
consumed as much as 200 machine days of computing cycles
from available workstations. The checkpointing feature of our
remote execution facility insured users that their jobs would
complete regardless if their jobs were forced by users at remote
locations to stop, or if remote locations failed. We showed that
users need only to dedicate an extremely small amount of
workstation capacity locally to received huge amounts of
remote cycles. We report that the leverage of remote execu-
tion observed was 1300, which means for every minute of local
capacity supplied, almost 1 day of remote CPU capacity was
received.

Acknowledgements

We would like to thank Don Nuehengen and Tom Virgi-
lio for their pioneering work on the remote system call imple-
mentation.

111

References

{11 M. W. Mutka and M. Livny, “Profiling Workstations’
Available Capacity for Remote Execution,” Performance
*87, Proceedings of the 12th IFIP WG 7.3 Symposium on
Computer Performance, Brussels, Belgium, (December
7-9, 1987).

M. W. Mutka and M. Livny, "Scheduling Remote Pro-
cessing Capacity in a Workstation-Processor Bank Com-
puting System", Proceedings of the 7th International
Conference of Distributed Computing Systems, Berlin,
West Germany, pp. 2-9, (September 21-25, 1987).

R. Agrawal and A. K. Ezzat, "Processor Sharing In Nest:
A Network Of Computer Workstations,” Proceedings of
Ist International Conference on Computer Workstations,
(November, 1985).

M. M. Theimer, K. A. Lantz, and D. R. Cheriton,
"Preemptable Remote Execution Facilities for the V-
System," Proceedings of the 10th Symp. on Operating
Systems Principles, pp- 2-12, (December, 1985).

R. Hagmann, "Processor Server: Sharing Processing
Power in a Workstation Environment," Proceedings of the
6th IEEE Distributed Computing Conference, Cambridge,
MA, pp. 260-267, (May, 1986).

M. Litzkow, "Remote Unix,"” Proceedings of 1987 Sum-
mer Usenix Conferences, Phoenix, Arizona, (June, 1987).

F. Douglis and J. Ousterhout, "Process Migration in the
Sprite Operating System,” Proceedings of the 7th Interna-
tional Conference of Distributed Computing Systems,
Berlin, West Germany, pp. 18-25, (September 21-25,
1987).

D. A. Nichols, "Using Idle Workstations in a Shared
Computing Environment", Proceedings of the 11th Symp.
on Operating System Principles, pp.5-12, (November,
1987).

P. Krueger and M. Livny, "The Diverse Objectives of
Distributed Scheduling Policies", Proceedings of the 7th
International Conference of Distributed Computing Sys-
tems, Berlin, West Germany, pp. 242-249, (September
21-25, 1987).

[10] H.-Y. Chang and M. Livny, "Priority in Distributed Sys-
tems," Proceedings of the Real-Time Systems Symposium,
(December, 1985).

[11] P. Sandon, "Learning Object-Centered Representations,"
Ph. D. Thesis, University of Wisconsin, Madison,
Wisconsin, (August, 1987).

[12] D. Chavey, Private Correspondence, University of
Wisconsin, Madison, Wisconsin, (December, 1986).

[13] C. A. R. Hoare, "Communicating Sequential Processes,”
Communications of the ACM 21, No. 8, pp. 666-677,
(August, 1978).

[14] A. Bechtolsheim, V. R. Pratt, and F. Baskett, "The SUN
Workstation Architecture”, Technical Report 229, Com-
puter Systems Laboratory, Stanford University (February,
1982).

{2

[3]

(41

(51

(6]

(71

[9]

