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Abstract—High throughput computing (HTC) systems are
widely adopted in scientific discovery and engineering research.
They are responsible for scheduling submitted batch jobs to
utilize the cluster resources. Current systems mostly focus on
managing computing resources like CPU and memory; however,
they lack flexible and fine-grained management mechanisms for
network resources. This has increasingly been an urgent need
as current batch systems may be distributed among dozens of
sites around the globe like Open Science Grid. The Lark project
was motivated by this need to re-examine how the HTC layer
interacts with the network layer.

In this paper, we present the system architecture of Lark
and its implementation as a plugin of HTCondor which is a pop-
ular HTC software project. Lark achieves lightweight network
virtualization at per-job granularity for HTCondor by utilizing
Linux container and virtual Ethernet devices; this provides each
batch job with a unique network address in a private net-
work namespace. We extended HTCondor’s description language,
ClassAds, so users can specify networking requirements in the
job submission script. HTCondor can perform matchmaking to
make sure user-specified network requirements and resource-
specific policies are fulfilled. We also extended the job agent,
condor starter, so that it can manage and configure the job’s
network environment. Given this important building block as the
core, we implement bandwidth management functionality at both
the host and network levels utilizing software-defined networking
(SDN). Our experiments and evaluations show that Lark can
effectively manage network resources within the cluster with low
overhead. It provides the users with better predictability of their
job execution and the administrators more flexibility in network
resource consumption policies.

Keywords—high throughput computing, HTCondor, bandwidth
management, software-defined networking, network-aware schedul-
ing.

I. INTRODUCTION

Cluster computing has become the workhorse powering
scientific discovery and engineering research. At the heart
of many compute clusters is a general-purpose workload
management batch system such as PBS [1] or Grid Engine [2].
The goal of these batch systems is to ensure submitted jobs
ultimately run to completion on cluster resources according to
a supplied policy. Achieving this goal is facilitated by resource
management mechanisms including scheduling, monitoring,
accounting, and binding to specific jobs [3]. However, batch
systems rarely treat the network as a first-class resource that
can be directly managed and bound to jobs. SLURM [4]
can perform topology-aware job placement to reduce com-
munication overhead; however, it cannot interact with the

network layer directly, thus leading to limited functionality.
For example, policies that allocate or prioritize network access
to different sets of jobs cannot be effectively monitored or
enforced. Network-based tools on their own are of little help
to enact job-specific policies because the network has no ability
to distinguish between different jobs running on the same host.

The need for batch systems to manage the network is
increasing as the size of data sets being processed grows, and
as high-throughput computing clusters have become federated
into wide-area international computing grids that connect hun-
dreds of clusters across dozens of countries [5]. In these sorts
of environments, as well as single cluster installations, HT-
Condor [6] is a widely deployed workload management system
in both commercial and academic settings. Traditionally, the
computing resources fully managed by HTCondor have been
CPU, memory, and disk. Accordingly, we started the Lark
project that aims to make networking a first-class managed
resource of HTCondor. This paper describes our progress
to date. We explain how the Lark software leverages recent
functionality in the Linux kernel to implement a mechanism
that provides a unique network identity for each compute job
by binding jobs to unique network address. Given a one-to-
one mapping of network addresses and jobs, HTCondor can
now interact with and alter the network layer based on its
internal policies. We also explain how Lark defines new job
and machine attributes in a policy language, allowing users
to describe networking requirements at job submission time
and resource administrators to enforce network policies. The
existing HTCondor matchmaking techniques can then match
jobs to appropriate hosts.

To demonstrate the utility of these techniques, we describe
our implementation of a bandwidth management application
for HTCondor. This allows us to control the available band-
width and perform network accounting for each individual job
on the host, even when many jobs are all running on the same
hardware. Furthermore, we explain how we integrate this with
software-defined networking via a job-aware OpenFlow [7]
controller to enable a complete network-level view of the
running HTCondor jobs. In this way, we can incorporate
application level information to perform flexible wide area
network (WAN) traffic management.

While our implementation is specific to HTCondor, the
basic approaches can be generalized to other software, and the
mechanisms described could apply to any software running
atop the Linux kernel.



II. BACKGROUND AND RELATED WORK

A. Adopted Technologies

Two essential Linux kernel features leveraged by Lark
are namespaces [8] and virtual Ethernet pairs. In Linux, a
namespace is a set of processes that have the same view of
a system resource. Unless namespaces are explicitly created,
all processes are in the “system namespace.” For example,
processes in a mount namespace all see the same file system
mount table, which may be a different set of mounts than on
the rest of the system. HTCondor uses mount namespaces to
give each job a separate /tmp directory. Different processes
in two different jobs see a different set of files in /tmp.
Jobs can also be run in separate PID namespaces, meaning
processes cannot see or affect each other through the kill
system call or via the /proc file system. Unlike traditional
Unix process groups, to change a namespace requires elevated
capabilities such as root-level access. Namespaces can be
nested - resources in one namespace can be moved into
a child namespace. One resource that can be managed by
namespaces are network devices. Consider a host with two
physical network devices, eth0 and eth1. If the devices are
placed in network namespaces A and B, respectively, then
processes in namespace A could not send packets through
eth1 and processes in namespace B could not send packets
through eth0.

A second kernel feature leveraged by Lark is the virtual
Ethernet device. Pairs of these devices are similar to Unix
socket pairs; data sent into one device, veth0, will come
out through the other device, veth1. By placing the devices
in the two namespaces respectively, we can link together
two different network namespaces. The combination of virtual
Ethernet devices and network namespaces are essential tools
for Lark’s mechanism described in the next section to provide
a unique network identity for each job.

In addition to Linux kernel extensions, our Lark work also
relies on the software-defined networking (SDN) approach
where aspects of the network are implemented in software
rather than hardware. The most popular approach to SDN
currently appears to be the use of the OpenFlow [7] protocol.
In the OpenFlow model, a switch is split into a control
plane and a data plane. The data plane consists of a table of
simple rules for packet processing. In a typical Layer-2 switch,
the control plane hardware makes forwarding decisions and
inserts processing rules into the data plane. When a switch
is OpenFlow-enabled, the hardware control plane is replaced
by an external software controller. If the data plane does not
know how to handle a packet, the packet is forwarded to
the controller. The controller processes the packet, determines
an action, and then installs new data plane flow rules in
response. Because the controller is implemented in software
and can manage multiple switches, there is more flexibility
to “program” the network compared to hardware control
planes. OpenFlow provides the abstraction model and protocol
specification for communication between the switch and the
controller. We utilize OpenFlow to program the network with
respect to the HTCondor system, but there are many other
applications, especially in cloud computing [9].

It is important to contrast this work with the use of
virtual machines (often in the context of cloud computing).

Container-based technologies are more lightweight - as they
share the same kernel, startup and shutdown can occur in
less than a second. The technologies used are less resource-
intensive, especially with respect to memory usage. Finally,
using containers allows us to “mix and match” pieces of
the host environment; for example, we can reuse the host
filesystem. In our anecdotal experience, scientific users rarely
want to maintain their own userspace.

B. Related Work

1) Bandwidth Management: Previous work in HTCondor
aimed to manage network bandwidth per subnet by measuring
the sizes and locations of the job executable and focused on
primarily managing the bandwidth used in the checkpointing
of jobs [10]. A key limitation of this approach is that it is not
possible to enforce the bandwidth usage, it requires the job
to be relinked with a special library, and it is not possible to
perform network management at the granularity of a particular
job.

Seawall [11] can divide network capacity within the data
center according to the weights of high-level entities (e.g.
VMs). It requires a shim layer in the virtualization or plat-
form network stack and is designed for cloud computing
environments. In contrast, Lark operates on a stock Linux
vendor kernel and does not require the use of virtual ma-
chines. Eschewing virtual machines is important to many in
the scientific community who demand peak return from their
cluster hardware and thus want their jobs running on physical
hardware. This makes it possible to access non-virtualized co-
processors and avoid incurring the additional administrative
overhead of maintaining VM images.

2) Network Virtualization: Userspace-level network virtu-
alization techniques involve using the POSIX ptrace method
to capture all system calls performed by an application. The
Parrot [12] software as part of the CCTools project is a good
example of this technique. The system calls, once intercepted,
can be re-implemented in user space for the purpose of imple-
menting an alternate networking stack. This approach allows
the host to do arbitrary transformations to the networking
stack. Unfortunately, this method has a high overhead for
some applications because every system call is transferred to
a user level process and does not allow integration with the
networking hardware. Thus, this technique does not integrate
well in the presence of network traffic which is not managed
by the intercept application.

In the ViNe system [13], one or more virtual addresses
were added to a given host along with a few static routes. The
traffic sent on these static routes is intercepted by a userspace
application and encapsulated onto a virtual network. This
allows precise control over the network usage across several
nodes in almost-arbitrary environments. However, this does not
provide job-level granularity nor does it provide control over
traffic destined for the Internet.

3) Application-aware Network Management: Application-
aware network management solutions are emerging in some
high-level cluster programming frameworks (e.g. Hadoop and
Spark). Such examples include Orchestra [14] and Varys [15].
However, a tremendous amount of computer cluster jobs are a
“black-box” process tree that could range from compiled native
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Fig. 1: Traditional network configuration for submitted jobs
on an HTCondor worker node

code to scripts to MATLAB interpreters. Lark enables network
management even for black-box jobs that do not adhere to any
specific programming model such as a MapReduce-style or
distributed SQL model.

III. SYSTEM ARCHITECTURE

HTCondor runs several processes on a cluster’s worker
node. There is a single condor startd process which repre-
sents the machine resources and one-or-more condor starter
processes, each of which manages the state and environment
of a running job. Previously, all running HTCondor jobs share
the network resource of the worker node. On Linux, this
means jobs can use BSD sockets to communicate with the
network through a network interface. However, there is no
isolation or encapsulation among different running jobs in
terms of network resource multiplexing such as bandwidth and
addressing. Figure 1 illustrates this configuration. Because all
jobs share a physical network device and are represented by a
single network address with potentially several ephemeral port
numbers in use, the external network has no way to implement
a per-job policy.

In Lark, we have extended the condor starter to have a
per-job network address. When the starter forks to launch a
job, it will create a new network namespace and a pair of
virtual Ethernet devices. The parent is in the system network
namespace and the child process is in the new network names-
pace. The parent process keeps one of the virtual Ethernet
devices (the external device) and passes the other end to the
child (the internal device). The starter can then integrate the
child process into the external network in one of several ways,
depending on the configured policy. Thus, each job has its
own network interface and each job can isolate their network
activities from the others. According to the user’s requests and
system policy, Lark can apply different network configuration
policies on the host machine. Currently, there are three options
provided in Lark: Linux bridge, Open vSwitch [16] bridge and
NAT (network address translation).

Figure 2 demonstrates the network configuration in Open
vSwitch bridging mode. The Linux bridge device has a similar
configuration. Open vSwitch provides more flexible APIs for
topology management and device configuration compared to
the bridge device. Further, Open vSwitch supports software-
defined networking (e.g. OpenFlow [7] protocol) which we
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Fig. 2: Open vSwitch bridging configuration for different
batch jobs. (Each dotted square represents a separate network
namespace)

will utilize in Section VI to better integrate the HTCondor job
into the network.

In this configuration, an Open vSwitch bridge ovsbr0 is
first created, then a physical network device eth0 is added
as a port of the bridge. The IP address and default routes
are moved from eth0 to ovsbr0. When a batch job is
scheduled to execute on this machine, a pair of virtual Ethernet
devices (connected to each other with a network pipe) are
created. The external device is also added as a port to the
bridge. The internal device is moved into a new network
namespace that is only visible to the job. The internal device
can retrieve an IP address via DHCP or static configuration.
Finally, the job is moved to the new network namespace.
This results in a private network namespace to the batch job
and each batch job can have an unique IP address. Figure 3
illustrates the whole process step by step in a more visual
manner for readers’ better understanding. Compared with the
traditional network configuration, each job now has better
network isolation and there is a one-to-one correspondence
between the IP address and network flows from the job, making
it possible to implement network scheduling policies based on
fine-grained job information.

As an alternate to bridge mode, Figure 4 demonstrates the
configuration of NAT. Compared with bridging mode, there is
no Layer-2 bridging among devices. Each job is assigned a pair
of virtual Ethernet devices and a private network namespace.
The packets from the external device are NAT’d by the system
iptables configuration. Therefore, each batch job shares
the IP address of the physical Ethernet network device as the
source IP address and the external network would only see
the host’s IP address, not the job’s. This configuration is ideal
for batch jobs that only require outbound connectivity but not
inbound connectivity as the job has no publicly routable IP
address on the network. This is a useful outcome in IPv4 where
addresses are scarce, but not a pressing concern with IPv6.
This mode also prevents the external network from performing
any special per-job customization, thus any policies must be
enforced by the local host.
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Fig. 3: Network namespace manipulation in Open vSwitch mode step by step
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IV. NETWORK POLICY

The network configuration technique described in Sec-
tion III becomes more interesting if the configuration process
can be made aware of system and job policy. One of the objec-
tives of Lark is to actively alter the network layer based on the
user request when they submit the batch jobs. For each running
job, there are two relevant HTCondor ClassAds [17], the job

ad and the machine ad. These ads contain key-value pairs
which describe the user’s job policy and the resource’s pol-
icy, respectively. We augment the existing ads with network-
related attributes, which describe users’ demands for network
configuration and network related attributes at the worker node.
Then, policies can be set and matchmaking can be performed
through the existing ClassAd mechanisms. For example, new
expressions can be added to the job Requirements attribute
to prevent the job from running on a host that cannot provide
sufficient bandwidth.

These two ClassAds are given into the network policy
component of the condor starter. The network policy com-
ponent converts the user’s requests to the appropriate network
configuration on the host. Table I and Table II list the two
sets of network-related ClassAd attributes for the job and
machine, respectively, and their corresponding meanings. The
machine ad attributes are evaluated within the context of both
the machine and job ad, then given to the policy component
for network configuration.

When the users submit batch jobs, any ClassAd attributes
from Table I can be specified in their job description. For
example, if the job requires HTCondor IPv4 connectivity for
the worker node, the following may be added to the submit
file:

+IPProtocol = "IPv4"
Requirements = TARGET.IPProtocol =?= \

MY.IPProtocol



Job ClassAd Attributes
IPProtocol Preferred IP protocol (IPv4 or IPv6)
RequestBandwidth Requested guaranteed host bandwidth.
NetworkAccounting Whether or not to perform network usage

accounting for the job.
InboundConnectivity Whether or not inbound connectivity for the

job is desired.
OutboundConnectivity Whether or not outbound connectivity for the

job is desired. Note that setting InboundCon-
nectivity and OutboundConnectivity to false
will effectively disable all networking for the
job.

RequestedVLAN Determines which VLAN the users want their
jobs to run in.

TABLE I: Network related job ClassAd attributes

Machine ClassAd Attributes
IPProtocol The available IP protocol (IPv4 or IPv6).
AvailBandwidth Indicates the negotiated speed of the host

network (Mbps).
VLAN The VLAN ID of the host network interface.
NetworkType The type of Lark network the host can con-

figure: NAT, bridge or ovs bridge.
AddressType Method for determining the network address

for the job (static or DHCP).
BridgeInterface The name of a local Ethernet interface to add

to the bridge.
ExternalInterface The name of the system-level virtual interface

corresponding to the starter.
InternalInterface The name of the internal starter virtual inter-

face.
NetworkAccounting Whether network accounting is available.

TABLE II: Network related machine ClassAd attributes

Here the =?= operator checks if the left hand side operand
is identical in both type and value to the right hand side
operand, returning TRUE when they are identical. Since the
policy expression for Requirements is too long for the
space here, we use \ to break it into multiples lines (\ serves
the same purpose in the following policy expressions). The
Requirements line above will prevent the job from match-
ing hosts with IPv6 connectivity. Since HTCondor IPv4/IPv6
mixed mode is still a work in progress, here we assume that
HTCondor runs either in IPv4 or IPv6 mode. Other sample
policies include:

• Suppose the user specifies the InboundConnectivity
and OutboundConnectivity attributes, and the machine
ad specifies the following NetworkType:
NetworkType = ifThenElse( \
TARGET.OutboundConnectivity, \
ifThenElse( \
TARGET.InboundConnectivity, \
"bridge", \
"NAT"), \

"null")

The ifThenElse operator takes three operands.
The first operand is a conditional expression. If it
is evaluated to be TRUE, the operator evaluates and
returns the value given by the second operand; if it
is evaluated to be FALSE, the operator evaluates and
returns the value given by the third operand. When
evaluated by the condor starter, the NetworkType will
be set appropriately according to the user policy.

• Suppose the job ad sets RequestedVLAN to “physics”

and the machine ad sets VLAN to “chemistry”. Then,
the user and machine ad will also need the following
requirements, respectively:
Requirements = TARGET.VLAN =?= \
MY.RequestedVLAN

Requirements = \
TARGET.RequestedVLAN is null || \
TARGET.RequestedVLAN =?= MY.VLAN

Without the mutual requirements, it would be possible
to run the job on this host, resulting in the incorrect
VLAN for the running job.

• If network accounting capability is desired, but not
required, the user would specify
+NetworkAccounting = true

By not adding a Requirements, the job can still
run on worker nodes without this capability.

If the declarative ClassAd-based matching is insufficient
for the final network configuration, the condor starter can
invoke an arbitrary script. The script is given both job and
machine ad via stdin and HTCondor will use the result-
ing stdout as the new machine ClassAd. This mechanism,
while allowing additional customization, cannot be utilized
for matchmaking. The prior VLAN example is a case where
this mechanism is applicable. After successful matchmaking,
the condor starter will still evaluate the VLAN attribute to
“chemistry”; however, an integer must be specified for the
VLAN ID. The callout script can be used to translate the user-
friendly name “chemistry” to an actual VLAN ID before the
Lark code is invoked.

These policies currently are still simple and “first genera-
tion”. With the further development of Lark, we would like to
provide the users with a richer set of network related ClassAd
attributes and more complicated policies to alter the network
layer.

V. BANDWIDTH MANAGEMENT

One example application of the techniques in Sections III
and IV is host bandwidth management and monitoring, avail-
able in the Open vSwitch bridging mode. The machine-level
daemon, condor startd, can be instructed to treat bandwidth
as an allocatable resource. At startup, the current worker
node bandwidth is determined by calling out an executable.
Currently, this executable simply reads out the negotiated
link speed for an Ethernet device. The corresponding result
is advertised by the machine, and the machine’s resource
capacities are updated accordingly so jobs requesting more
bandwidth than available cannot match.

When a job matches the machine and requests a bandwidth
guarantee, the condor startd will decrement the advertised
available bandwidth by the requested amount. This is done
in a greedy manner in HTCondor (similar to CPU-core and
memory-based matching) and can result in an inefficient al-
location of bandwidth. We do not currently tackle this issue
further. Once all the bandwidth is allocated to jobs, HTCondor
will not start additional jobs until a running one completes and
releases the network bandwidth resource.

When setting up the Open vSwitch bridge, the virtual port
connected to the external device is configured with the ap-



propriate QoS rate limiting (a built-in Open vSwitch feature).
Linux’s firewall, iptables is set up with a chain per job
slot so all packets to and from the internal network device are
monitored. The Linux kernel will count the packets and bytes
that match each firewall rule. Furthermore, these counters are
periodically polled to get the total bytes in and out of the job.
This can be used to derive the average network rates, which
are reported centrally to the HTCondor pool together with the
total traffic information.

The Open vSwitch rate limiter will prevent the job from
using more than the requested bandwidth. By crudely parti-
tioning based on the negotiated link rate, we have a simple
bandwidth management scheme. This approach has some
limitation for network traffic that needs to go through a WAN
as the bandwidth for the local area network is less likely
to be constrained than the bandwidth available off-site for a
cluster. To coordinate bandwidth availability across clusters,
we need to interact with the network itself, which is explained
in SectionVI.

Section VII goes into details about our set of experiments
designed to evaluate the effectiveness of this and other band-
width management features.

VI. SOFTWARE-DEFINED NETWORKING INTEGRATION

Software-defined networking (SDN) techniques allow for
a decoupling of the software control-plane from the data-
plane of the network. Figure 5 shows a traditional data center
network topology where virtual machines are bridged onto
a hierarchical network, and each network device functions
autonomously.

Through abstractions made available for SDNs (e.g. Open-
Flow), it is now possible to manipulate the network program-
matically from a centralized controller application. In addition,
these same abstractions can be applied to virtual network
switches running on individual hosts via Open vSwitch. Fig-
ure 6 on page 6 shows a simplified network topology where the
network’s control-plane is centrally administered by an SDN
controller. This centralized control layer in software-defined
networking opens the network up for innovations in scheduling
and traffic management.

We have implemented a custom OpenFlow controller in
order to centrally administer the Open vSwitch instance on
each host as well as OpenFlow capable physical network
devices. The controller receives a copy of the job and machine
ClassAds when the job starts, allowing us to schedule the
use of network resources and apply policy to the network
dynamically from this central vantage point. This controller
is based on the POX [18] controller with the addition of an
HTCondor-specific module.

The condor starter can invoke an arbitrary script at startup
and shutdown of the job’s network namespace. The script is
given a copy of the job and machine ClassAds. The ads are
sent to the controller listener through a TCP socket.

The controller maintains an in-memory database of Class-
Ads for all running jobs in the pool. The machine ad includes
the job’s IP address, allowing the controller to maintain a
mapping between IP addresses and job ads.
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Fig. 5: Traditional data center network topology
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Fig. 6: Network topology with OpenFlow controller and Open
vSwitch integration

In addition to the job ID, the network controller has
access to all job attributes such as the user name or requested
bandwidth. The controller behaves similarly to a Layer-2
switch. When the controller receives a PacketIn event from the
switch it can look up a job ClassAd associated with the source
or destination IP address. If a job is associated with the IP
address, it can use the corresponding ClassAd and configured
policy to determine an appropriate action. Otherwise, it will
apply normal Layer-2 switching rules. In most cases, the
OpenFlow controller will install a new flow rule in the switch
so future packets to or from this job do not need to be handled
by the controller. The controller’s policies are meant to be
heavily customizable via a configuration file.

With these network policies applied, the isolation among
different HTCondor jobs is greatly improved.

Currently, the OpenFlow controller performs no routing
actions; we have mostly focused on alterations of the existing
Layer-2 network. We have designed a few sample policies
to demonstrate the power in integrating the network with
HTCondor. Current policies include:

• Drop all HTCondor job traffic for users specified in
the HTCondor configuration file.

• Create a network slice per user; that is, drop any traffic
between jobs owned by different users.

• Drop all network traffic going to the WAN port for a
given set of users or, alternately, send the traffic to an
alternate WAN port (for example, if those users have
purchased access to a particular high-speed network).



Extension for Core Switch

Besides host-level network policing, we also implemented
bandwidth management for HTCondor related network traffic
at the core switch level. The core switch is the switch that
connects the data center to the WAN. At the core switch, it is
difficult to do per-job bandwidth management because of the
large number of HTCondor job traffic flows going through the
same interface. Instead, we would like to achieve bandwidth
management for a bundle of traffic flows within the same
HTCondor accounting group.

Currently, OpenFlow 1.0 does not provide a mechanism
for manipulating QoS policies (such as dynamically creating
bandwidth rate limiting); however, it allows the switch to
specify which QoS policy to apply to a given packet. This,
along with the third policy above (per-user WAN policy), can
be used to apply specific WAN bandwidth shaping policies.
A configuration file specifies the mapping between HTCondor
accounting group and the QoS queue previously created by the
network administrator. We hope to have our controller auto-
matically create these queues when OpenFlow 1.3 hardware is
more broadly available.

As WAN bandwidth is often the limiting factor, we believe
this can provide effective bandwidth allocation and prioriti-
zation when the WAN resource is scarce. The mapping of
HTCondor groups to QoS policy and the configuration of the
QoS policy must be configured separately and manually in
the OpenFlow controller and physical hardware. The detailed
experimental results are presented in Section VII.

VII. EXPERIMENT RESULTS AND EVALUATION

In this section, we demonstrate the effectiveness of our
bandwidth management functionality, analyze the scalability
and performance overhead brought by Lark compared with
regular HTCondor software, and we also discuss a real-world
use case which shows that Lark can provide easy fair sharing
or prioritization on network resources in the multi-tenancy
scenario.

A. Effective Bandwidth Control

1) Host Level Bandwidth Management: To demonstrate the
functionality and utility of the host level bandwidth manage-
ment, we have designed an experiment which highlights the
new capabilities. The network and cluster topology is outlined
in Figure 7. These jobs all share the worker node’s available
network bandwidth (1000Mbps to the local switch) and process
files from an HTTP server.

We submit jobs from three users, A, B and C. Jobs
from user A request 100Mbps of bandwidth and download
from HTTP server A; jobs from user B request 300Mbps of
bandwidth and download from HTTP server B; and jobs from
user C request 600Mbps of bandwidth and download from
HTTP server C. As each user has equal priority, one job from
each can run at a time. After all three jobs (one from each user)
start to execute on this worker node, no more new jobs can be
assigned to it as there is no network resource available. These
new jobs are either assigned to other available worker nodes
or wait in the job queue until a worker node is available and
provides enough bandwidth resource as the new jobs request.
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Fig. 7: Network topology configuration for host level band-
width control

It is worth noting that the host level bandwidth management is
ideal for network communication within a single cluster since
the network is typically homogeneous. These HTTP servers
are located on the same switch as the worker node.

Figure 8 shows the resulting network usage with bandwidth
management enabled. We produce the plot by graphing the
network traffic from the HTTP servers A, B and C (targetted
to be 100, 300, and 600Mbps, respectively). Figure 8a shows
the corresponding network rates during each job’s execution.
The incoming traffic rates of these jobs are restricted to their
bandwidth requests. Figure 8b shows a second set of exper-
iments, identical to the prior case except without bandwidth
management. As TCP provides fairness and each of the three
running jobs uses one TCP stream, we expect the jobs to
split the bandwidth evenly - as demonstrated in the graph.
Finally, Figure 8c demonstrates the network traffic generated
by running several jobs of each type sequentially. As expected,
the jobs stay within their bandwidth allocations. The spikes
shown in the traffic graphs are due to sampling intervals and
limitations of the QoS policy in Open vSwitch. Compared to
Figure 8b, we demonstrate the ability to give jobs of type C
a shorter execution time than what was previously achievable
in HTCondor.

2) WAN Bandwidth Management: With the combination
of HTCondor, network namespaces, and OpenFlow-enabled
switches, we can classify flows on the network according to
the attributes of the associated jobs. We use this to apply site
policy to manage the scarce WAN bandwidth resource.

To demonstrate the usefulness of our techniques applied to
managing WAN bandwidth, we have performed FTP transfers
between Nebraska and Wisconsin test nodes as part of HT-
Condor jobs. These have similar network characteristics of grid
jobs running with remote data access. The network topology
of our test setup is illustrated in Figure 9. We use a high-end
server node with Open vSwitch installed as the core switch,
connecting the test nodes at Nebraska site to the WAN through
Internet2 at a rate of 1Gbps. Using Open vSwitch, we create
three QoS queues at the Ethernet port eth0 that connects to
the external network. q0 is the default queue, which has the
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Fig. 8: Network traffic graph for HTCondor jobs with and without host level bandwidth management
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Fig. 9: Network topology configuration for WAN bandwidth
control

default maximum network bandwidth of that physical port.
q1 and q2 are created to have network bandwidth 250Mbps
and 100Mbps respectively. q1 is for CMS traffic (the name of
a local project which purchased a large local cluster whose
jobs are considered high-priority) and q2 is for lower-priority,
non-CMS traffic. Two FTP servers at Wisconsin site are set
up for file uploading. One is on wisc-lark01, the other is on
wisc-lark02 for CMS and non-CMS uploads, respectively. We
submit four HTCondor jobs (two CMS jobs and two non-CMS
jobs), each of which uploads a 5GB file to FTP servers. We
indicate the type of job and FTP destination in the submission
scripts to HTCondor. Figure 10a illustrates the corresponding
aggregate network traffic graphs for these two groups. We
can observe that the aggregate traffic obeys the networking
policy as the high-priority jobs do not share the bandwidth
equally with the low-priority jobs. Figure 10b further looks into
the detailed bandwidth usage for each of the two jobs within
the non-CMS group. It demonstrates that the jobs within the
same accounting group behave as expected according to TCP
fairness.

These experiments clearly demonstrate the ability to man-
age the network based on application-layer data. Without
assigning each job its own address on the network or sending
the application-layer data (the job’s ClassAd) to the OpenFlow
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Fig. 10: WAN bandwidth control management for HTCondor

controller, we wouldn’t have been able to differentiate the
network flows by the owner in the HTC layer.

B. Performance Overhead

To provide network management, we have introduced sev-
eral additional components such as Linux network namespaces,
Open vSwitch on the host, the POX controller, and OpenFlow
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on the central switch. Each new component comes with a par-
ticular cost compared to plain HTCondor. We are particularly
interested in:

• The overall overhead for setting up and tearing down
private network space for each job and performing
necessary networking configuration.

• Network performance degradation by using Open
vSwitch.

• The overhead in the use of SDN techniques for
network management on Open vSwitch.

1) Startup Overhead: We record the timestamps at the
beginning and end of the batch job to calculate the extra over-
head from creating and configuring the network namespaces
(creating the virtual Ethernet device, adding it to the network
bridge, and the Layer-2 configuration). Compared with batch
a job running without Lark, the average extra overhead is
about 1 second, including the time it takes for the virtual
Ethernet device to perform network configuration with the
DHCP server. By caching the DHCP release on the worker
node between jobs, this overhead is reduced to 0.4 second. This
extra overhead varies mostly with the time to recieve the DHCP
offer from the server; the other kernel operations have little
observed variability. As the typical HTC job execution time is
measured in hours, we consider this overhead negligible.

2) Open vSwitch: Open vSwitch forwards packets between
the namespaces in the kernel. When the QoS bandwidth
limiting is applied, we are interested in the actual throughput
that can be achieved between the virtual Ethernet device in
the network namespace and the other hosts within the cluster.
Using iperf[19] to do a 30 second transfer, Figure 11 shows
the achieved throughput with different levels of bandwidth
allocation.

The observed throughput is comparable to the configured
bandwidth limiting. In practice, for CMS jobs, we have found
that the bottleneck is more often the IO subsystem or the
single-stream TCP performance over the WAN, not the Ether-
net device.

Using the standard ping utility, we measured the end-
to-end latency between end points with and without Open
vSwitch. We found that the end-to-end latency difference is
negligible.

3) OpenFlow Controller: In our setup, when a new flow is
encountered on the OpenFlow switch, its packets are forwarded
to the local controller until a new rule is installed. Again, by
measuring latency with ping, we observe that the time taken
to forward the packet, look up the corresponding HTCondor
job, and install a new rule is approximately 50ms. After these
initial packets, the extra latency is negligible.

4) Scaling Limitations: HTCondor clusters tend to run
single-core jobs, meaning that a fully-loaded worker node
can expect to have a network namespace and IP address
per core. In addition to the startup and teardown times of
each job being negligible compared to job runtime, we have
observed no problems when running many jobs per worker
node. Locally, the factor limiting the use of our techniques
across the production clusters is a shortage of IPv4 addresses.
Until IPv6 becomes more widespread across the grid and we
implement IPv6 support in this software, we plan on NAT’ing
the majority of jobs. Unfortunately, the wider network cannot
distinguish flows by individual jobs in NAT mode, preventing
us from applying a uniform network management policy.

The SDN controller is an additional level of complexity to
the HTCondor system that the condor starter must commu-
nicate with, reducing overall system stability. Finally, current
OpenFlow hardware implementations have a finite limit on the
number of rules (often around 4096). As each new job requires
at least one rule, the hardware provides another bound on the
number of jobs we can run.

C. Use Case Analysis

As WAN bandwidth is a scarce resource, it’s possible for
resource contention to lead to priority inversion. To illustrate
the utility of bandwidth management, we have a real-world
use case which compares high-priority CMS jobs running at
Nebraska and uploading 1GB of output to a FTP server at
Wisconsin with identical low-priority non-CMS jobs. Starting
one CMS job and N non-CMS jobs simultaneously (varying
N from 1 to 15; one TCP stream per job), we compare the
speed of the high-priority job with bandwidth management to
the same experiment without. When bandwidth management
is enabled, we allocate 900Mbps bandwidth to the CMS job
and 100Mbps bandwidth to non-CMS jobs. This bandwidth
allocation scheme is to show that the CMS job is treated to
be the high priority job with more resource allocation. When
bandwidth management is not enabled, the CMS job and non-
CMS jobs compete for network resources equally. Figure 12
illustrates the variations of average network throughput for
the CMS job when the number of non-CMS jobs increases.
When there is bandwidth management, the throughput for the
CMS job is pretty stable and not affected by the increasing
number of non-CMS jobs because all non-CMS job traffic has
been forwarded to the low-bandwidth queue. Without band-
width management, the throughput of the CMS job degrades
accordingly when the number of non-CMS jobs increases.
Table III shows the job execution speed up of the CMS job
when using bandwidth management. This use case reveals that
users can have better predictability with their submitted jobs in
terms of execution due to the network resource allocation and
isolation. Similarly, administrators can perform fair sharing
and/or prioritization on network resources among different sets
of users by simply modifying the relevant configuration file.



No. of non-CMS jobs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Execution Speed up 1.8 2.7 3.6 5.7 6.5 7.6 7.9 10.6 11.2 12.9 13.5 17.6 22.1 22.7 25.2

TABLE III: Job execution speed up for the CMS job from using WAN bandwidth management
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Fig. 12: WAN bandwidth management use case analysis

VIII. CONCLUSIONS AND FUTURE WORK

There is a stubborn belief in the false dichotomy of batch
computing versus resource provisioning. That is, in order to
tightly control resources such as CPU, memory, or the network,
cluster usage must be based on virtual machine technology.
HTCondor has successfully used technologies from Linux
containers to manage CPU and memory; the Lark project
demonstrates that similar techniques can be applied to manage
the host’s network. By combining Linux network namespaces
with OpenFlow, we can manage the cluster network resources,
including WAN bandwidth. Our management techniques are
more lightweight than virtual machines. Additionally, we can
reuse the host’s OS environment and the network namespace
can be fully set up in less than a second.

The greatest impact of this work is permitting the network
to associate application-level job attributes with network flows.
While we mainly classified flows by the job owner, more subtle
policies are possible. For example, we could also prioritize
flows according to the job’s priority for each owner. In the
future, we hope to apply similar management techniques to
other applications such as GridFTP. GridFTP transfers have a
wealth of application data (current logged-in user, current file
being transferred, etc.) that network policy could benefit from.
We aim to integrate as many applications as possible until all
network activities of a project on a cluster can be explicitly
managed according to site policy. We acknowledge that the
work is still in its preliminary state and the proposed network
policies are simple, thus we plan to deploy the Lark code
across our production clusters as OpenFlow hardware support
matures to thoroughly assess the robustness and performance
of the system at scale with more realistic workloads.
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