
1 The 7th International
Conference on

Distributed

Berlin, West Germany
September 21-25, 1987

SPONSORED BY

THE COMPUTER SOCIETY
OF THE IEEE

THE INSTITUTE OF ELECTRICAL
AND ELECTRONICS ENGINEERS, INC

IEEE

Edited by: R. Popescu-Zeletin
G. Le Lann
K.H. (Kane) Kim

Computer Society Order Number 801
Library of Congress Number 87-80437
IEEE Catalog Number 87CH2439-8
ISBN 0-8186-0801-3
SAN 264-620X

COMPUTER
SOCIETY

\LAND ELECTRONICS ENGINEERS, INC PRESS @

I

!

i_______ The 7th International
Conference on

J I -

Berlin, West Germany
September 2 1-25, 1987

SPONSORED BY

THE COMPUTER SOCIETY
OF THE IEEE

THE INSTITUTE OF ELECTRICAL
AND ELECTRONICS ENGINEERS, INC

IEEE

Edited by: R.. Popescu-Zeletin
G. Le Lann
K . H . (Kane) Kim

Computer Society Order Number 801
Library of Congress Number 87-80437
IEEE Catalog Number 87CH2439-8
ISBN 0-8186-0601-3
SAN 264-620):

The papers appearing in this book comprise the proceedings of the meeting mentioned on the
cover and title page They reflect the authors’ opinions and are published as presented and
without change, in the interests of timely dissemination Their inclusion in this publication does not
necessarily constitute endorsement by the editors, Computer Society Press of the IEEE, or The
Institute of Electrical and Electronics Engineers, Inc

Published by Computer Society Press of the IEEE
1730 Massachusetts Avenue, N W

Washington, D C 20036-1903
3

Cover designed by Jack I Ballestero

Copyright and Reprint Permissions Abstra
permitted to photocopy beyond the limits
articles in this volume that carry a code at the
indicated in the code is paid through the C
MA 01970 Instructors are permitted to photocopy isolated
use without fee For ather copying, reprint or republication p
Services, IEEE, 345 E 47th St, New York,
Institute of Electrical and Ele

ercial classroom

ISBN 0-81 86-0801 -3 (paper)
ISBN 0-81 86-4801 -5 (microfiche)

ISBN 0-81 86-8801-7 (case)
SAN 264-620X

Order from: Computer Society of the IEEE
Terminal Annex
P 0 Box 4699
Los Angeles, CA 90051

Computer Society of the IEEE
13, Avenue de 1’Aquilon
B-1200 Brussels
BELGIUM

IEEE Service Center
445 Hoes Lane
PO Box 1331
Piscataway, NJ 08855-1 331

THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC

IEEE

ii

The 7th International
Conference on
Distributed Computing Systems
Sponsored by :

The Computer Society of the IEEE

The Institute of Electrical and Electronics Engineers, Inc.

In Cooperation with:

Hahn-Meitner-lnstitut Berlin GmbH

K!!!!!! Gesellschaft fur lnformatik e.V.

Supported by:

,Senat von Berlin

Sparkasse der Stadt Berlin West

Siemens AG

IBM Deutschland GmbH

Nixdorf Computer AG

Digital Equipment GmbH

Deutsche Bank Berlin AG

Standard Elektrik Lorenz AG

iii

Scheduling Remote Processing Capacity In A Workstation-Processor Bank Network

Matt W Mutka and Muon Lzvny

Department of Computer Sciences
University of Wisconsin

Madison. WI 53706

ABSTRACT
This paper addresses the problem of long term scheduling of a

group of workstations and a processor bank.. Long term scheduling
manages the allocation of remote processing cycles for jobs that exe-
cute for long periods and require little interaction or communication.,
It extends the computing capacity a user sees beyond the capacity of
hisher workstation. We assume that each workstation is under the
full control of its user, whereas, the processors that constitute the
processor bank are public resources.. Therefore, a workstation can be
allocated for remote processing only if its u p does not perform ,any
local activity.. In the paper we present a new long term scheduling
algorithm, the Up-Down Algorithm, and a set of performance criteria
for evaluating these types of scheduling algorithms. Using these cri-
teria and gaces of usage patterns of 13 workstations we evaluate the
algorithm and demonstrate its efficiency and fairness.. We analyze
the performance of the Round-Robin and the Random algorithms
using the same criteria and workload, and show that the new algo-
rithm out performs the other two. v e all the three algorithm pro-
vide the same throughput, the Up-Dovh dgorithm protects the rights
of light users when a few heavy users try to monopolize all free
resources.. The two other algorithm do not maintain a steady quality
of service for light users in the face of an increasing load of heavy
users

1. Introduction
Currently, many computing professionals have personal works-

tations for research, software development, and engineering applica-
tions.. These powerful stations are considered private resources
under the contxol of their users. However, in order'to provide access
to common resources and to enable information exchange, these
private resources are interconnected by one or more local area net-
works to form an integrated processing environment.. The total pro-
cessing capacity of such an environment can be very large. As an
example, a portion of the computing envimment at our department
consists of 75 private workstations, 8 multiuser hosts, and a 20 node
partitionable multicomputer. All of these resources are intercon-
nected through two token ring networks and two Ethernets [l].. Mul-
tiuser hosts provide access to resources for users without worksta-
tions The partitionable multicomputer, called the Crystal Multicom-
puter [2], consists of 20 VAX@-ll/75Os connected by a 8 0
Megabivsec Proteon ProNet token ring [3]., Crystal provides a vehi-
cle for research in distributed systems, and extra computing cycles
It can be viewed as a Processor Bank that serves as a source of com-
puting cycles.,

m e total capacity of our research environment is more than
180 MIPS. (see Table 1) This large capacity iS comparable to that of

* This research was supported in part by the National Science Foundation under grant

@ VAX is a trademark of Digital Equipment Corporation
MCS-8105904

CH2439-8/87/0000/0002$0100 0 1987 IEEE

k o u r c e Kind # of M I P S Per Capacity I
Machines Machine" (MIPS)

Multiuser Host VAX 11/780 2 2 4
Multiuser Host VAX 1 l n 5 0 6 1 6
workstations M~CIOVAXII~ 2 150

VAX 11fl50 20
180

I;ztd ;: 1

** Based on the values given fox individual machines in [4],,
Roughly the capacity of VAX lln80 [5].

Table 1: Portion OfReseach Computing Capacity At Wisconsin.

several large supercomputers. An analysis of the usage pattern of
this distxibuted capacity shows that a large portion of the capacity is
not utilized [6],. When workstations are not used by their owners,
they can be sources of cycles for users who want additional cycles..
There are users that would like to expand their computing capacity
beyond their local workstations and use the available computing
cycles.. We call networks that allow users at workstations to expand
their capacity Local Computing capacity aVpanded (LOCOX) net-
works,. Figure 1 illusuates a LOCOX network. Jobs submitted to
the LOCOX network can be divided into two categories: interactive
and background, Interactive jobs require frequent input and a small
amount of CPU capacity.. Backg'ound jobs are computationally
intensive and r u n for long periods of time without any interaction
with the users,. Users would benefit if they could receive a portion of
the remote computing capacity for their background jobs, Experi-
ence from observations of the Crystal Multicomputer shows that
there are long running jobs that often consume several hours of pru-
cessing time. One user has been observed to have a single job that
has consumed about 2 months of cpu time on a VAXl l n 5 0 [7]! We
have also observed a steady supply of background jobs from another
user,. This user has maintained a queue of 20-30 background job
requests over a period of five months where each job ran about 2
hours on a VAXl1/750 [81..

The management of the huge disnibuted computing capacity of
a LOCOX network creates a wide spec~um of scheduling problems
to consider.. In this paper we address one resource management
aspect of this environment called long term scheduhg.. Long term
schedulers manage the allocation of remote processing cycles for
jobs that execute for long periods and require little interaction with
the workstation from which the job was submitted for execution..
They extend the computing capacily a user sees beyond the capacity
of hisher workstation.. The emphasis of long term scheduling is not
the balancing of work among computing resources already allocated,
as is done in middle term scheduling, but the high level view of pro-
viding extsa computing service when available, This management is
at the user level and not at the job level Unlike short term schedul-
ing, it is not concerned with the internal management of the
processes of individual jobs. Short term scheduling is the allocation
of the processor on a workstation to processes in its run queue. The
goal of long term scheduling is to give all users a fair share of avail-

2

WoIkstations

I \

* . - *)lJ
Processor Bank

Figure 1.
LOCOX Network

able remote processing cycles The remote cycles are from private
resources (that are temporarily made available for general use) and
public resources Private resources are workstations owned by users
and under their control If the owner is not using the workstation,
the workstation becomes a source of remote cycles, Since we con-
sider a workstation to be owned by a single user, we use the words
wer and workstutlon in the same context Public resources are the
processors in a processor bank with the explicit pu~pose of providing
extra cycles This paper considers all the processors within the
LOCOX network to use the same instruction set.

A long term scheduler must be efficient and fair An efficient
algorithm gives users access to remote cycles without sevexe over-
head and therefore uses most of the available capacity. A long term
scheduler is fair if it treats every wsrkstation as an equal contender
for available remote cycles. Fair allocation is achieved by trading
off the amount of execution time already allocated to a user and the
amount of time the user has waited for an allocation This tradeoff is
the basis for the Remote Cycle Wait Ratio evaluation criterion This
criterion guards against the domination of computing cycles by
heavy users. The remote cycle wait ratio is the amount of remote
execution time a workstation received divided by its wait time The
remote execution time of a workstation is defined as the total remote
processing time allocated to a workstation. The wait time is the
amount of time the workstation had a need for remote cycles but has
no such cycles allocated.

Besides the remote cycle wait ratio, we view the fairness of
remote cycle allocation from two other related perspectives They are
the Remote Cycle Percentage and the Remote Response Ratio The
remote cycle percentage of a workstation is the percentage
backgound job demand that was met by remote cycles The remote
response ratio is the expected turnaround time of jobs that finished
from a remote location divided by their service demand The tur-
naround time is the difference between the time a job frnishes its exe-
cution and its arIival time. The remote cycle wait ratio differs from
the remote cycle percentage because the remote cycle wait ratio
gives the expected amount of time a workstation has to wait to
receive remote cycles, while the remote cycle percentage gives the
proportion of cycles consumed remotely in comparison to the total
IIumbeI of cycles consumed by background jobs The remote
response ratio is a criterion that considers the individual jobs while
the other criteria look at the total allocation of cycles per user. A fair
allocation algorithm should result in steady behavior for all three cri-
teria for lightly loaded users that share resources with heavy loaded
users regardless of the demand pattern of the latter

We have developed an efficient and fair long term scheduling
algorithm, called the Up-Down Algorithm, that meets these perfox-
mance objectives The Up-Down algorithm maintains steady access
to remote cycles for light users in spite of a large continuous demand

for cycles by heavy users Naive approaches cause light users’ qual-
ity of service to suffer when heavier users increase the number of
cycles they consume The difference between the Up-Down algo-
rithm and naive algorithms is that the Up-Down algorithm trades off
reward (remote capacity allocated) and penalty (waiting time suf-
fered when a remote resource is wanted but denied), while the other
algorithms favor heavy users with better access to remote capacity
In section 5, we present a detailed analysis of the algoritbm We
show that under the Up-Down algorithm, light users maintain a
steady share of remote resources even when heavy users keep asking
for more

The workloads used for evaluating long term scheduling algo-
rithms are important The evaluation is better justified if it is done
using workloads deFived from real systems We have evaluated our
algorithm by using a pace of workstation usage The trace was
obtained by monitoring the activity of a subset of ow workstations
over a period of five months

Several other papers have discussed distributed computing sys-
tems and have addressed forms of scheduling distributed resources
These systems include the Locus System [9], the Cambridge Distri-
buted Computing System [lo], the Eden System [Ill, the Charlotte
Distributed Operating System [121, F’rocess Server [13], the NEST
project [14], and the remote execution facility in the V-Kernel [I51
Locus is a distributed Unix@ operating system with multiple hosts It
supports transparent access to a distributed file system with the
ability of the user to explicitly schedule a job at the lowest loaded
machine The Cambridge Distributed Computing System provides
transparent access to distributed resources A central concept to the
system is to provide access to a remotely located machine as a per-
sonal computer where the user explicitly schedules work for the
machine. The Eden System consists of distributed workstations for a
high degree of sharing and cooperation among the users Each
machine is part of a larger system, and no single user of a worksta-
tion has complete control of their workstation The Eden system ker-
nel determines on which workstation of the system a process will
execute Foreign processes can be placed on a workstation that
resides in a particula~ user’s office even though that user is actively
working on the workstation in that office The Charlotte Distributed
Operating System runs on the Crystal Multicomputer and supports
closely interacting processes cooperating to solve a computationally
intensive problem [2] Processes are placed on machines explicitly
by users and will stay there until they tenninate or are explicitly
migrated Process migration is the movement of processes during
their execution among different machines in the system depending
on each individual machine’s load Papers describing Process
Server, the NEST project, and the preemptable remote execution
facilities of the V-Kernel discuss facilities for the remote execution
of programs on idle workstations These papers discuss how to
implement the remote execution facilities, but issues of scheduling
are not addressed

Except for the Eden System, these papers describe systems that
require the users to initiate the placement of processes at machine
locations. The Eden System kernel determines where to place
processes, but it does not consider the workstations as private
resources In the Eden System, foreign processes can be placed at
workstations even though the workstation’s owner is actively sub-
mitting jobs.

Section 2 describes the workload model for our study In sec-
tion 3 we present mechanisms that have been established to support
efficient scheduling of our LOCOX network The system model for
our study is presented in section 4 The model allows users to have
control of their workstations, but enables others to use workstations
that would otherwise be idle We describe in section 5 our design of
the UpDown algorithm for allocating remote capacity and compare

a Unix IS a trademark of AT&T Bell Laboratones

.3

its performance and behaviox with the Random and Round-Robin
algorithms Section 6 presents our conclusions and a description of
our on going work on LOCOX network resouxce management

2. Workload Of Workstations
We have monitoxed the usage patterns of 13 DEC MicroVAX

I1 workstations running under Berkeley Unix 4 2BSD over a period
of five months The stations obsexved are owned by a variety of
users They are 6 workstations owned by faculty, 5 by systems pro-
gxammexs, and 2 by graduate students

We have obtained the profile of available and non-available
pexiods of woxkstations so that we can use an actual workload in OUI
evaluation study. An unavailable period, NA, occurs when a worksta-
tion is being used, or was xecently used by its owner The station is
considexed as NA if the average user cpu usage was above a thres-
hold (one-fourth of one percent [16]) within the last 5 minutes The
average cpu usage follows the method the Unix Operating system
uses for the calculation of user load. This load is a decaying average
that includes only the user processes Activities resulting from pro-
grams such as time of day clocks or graphical representations of sys-
tem load do not generate user loads that arise above the threshold
An available period, AV, occurs whenever a workstation's state is not
NA

The workstation usage patterns were obtained by having a
monitoring program executing on each workstation "he monitox on
each station executes as a system job and does not affect the user
load The monitor looks at the user's load every minute when the
workstation is h the NA state If the user's load is below the thres-
hold for at least 5 minutes, the workstation's state becomes AV Dur-
ing this time the workstation's monitor will have its "screen saver"
enabled. The monitor looks at the user's load every 30 seconds
when the workstation is in the AV state Any user activity, even a
single stroke at the keyboard or mouse, *ill cause the "screen saver"
to be disabled and all user windows on the woxkstation's screen to be
redxawn. This activity brings the user load above the threshold, and
causes the state to become AV. If no further activity occurs, approxi-
mately seven minutes pass before the station's state changes to AV
This is because it takes the user load average 2-3 minutes to drop
below the threshold, and an additional 5 minute waiting time is
imposed. The waiting period is imposed so that usexs who stop work-
ing only temporarily are nor disturbed by the "screen saver" reap-
pearing as soon as they are ready to type another command The
waiting time is adjustable, but it has been observed that the five
minute value is a good value to choose without causing an annoy-
ance to users [17] This conservatively decides whether a station
should be a target for xemote cycles. Stations are idle much mole
than what appeaxs in the AV state The user load with the imposed
waiting time is used as a means of detecting availability because the
station should not be considered a source of remote cycles if an
ownex is merely doing some woxk, thinking fox a minute, and then
doing some more woxk Otherwise a station would be a source of
remote cycles as soon as the ownex stopped momentarily. The
workstation's owner would suffer from the effect of swapping in and
out of hisher processes, and the starting and stopping activities of
the remote processes

An analysis of the traces showed that the monitored woxksta-
tions were available approximately 70% of the time This means
there are a lot of extra cycles to use fox long term scheduling. The
average AV and NA state lengths were about 100 minutes and 40
minutes Iespectively. Long AV intervals are desirable since back-
ground jobs placed remotely will have a good chance to stay there
for a long time. One might expect that long AV intervals occur O d Y
in the evening hours. We have observed a high perwntage Of Such
intervals during working hours The busiest time during the working
week was observed to be between 2-3 PM. Even during this time,
the average amount of time the workstations are in the AV state is

approximately 50%. A detail analysis of workstation usage patterns
is given in [6]

3. Mechanism For Long Term Scheduling
In ordex to implement a long term scheduliig policy on a

LOCOX network, a number of mechanisms are needed. A mechan-
ism for xemote placement of jobs? checkpointing, restarting jobs
from the checkpoint, and monitoring the activity of the LOCOX net-
work has to be in place in order to carury out any long term schedul-
ing policy. Checkpointing is required since a remotely executing job
must be stopped when a user resumes using the workstation on
which it is running. This job will either be moved to another location
to resume execution, or returned to its origin workstation to wait
until a new location becomes available

Within our LOCOX network, we have implemented check-
pointing for the remote Unix [181 facility of the Crystal Multicom-
puter in order to determine the feasibility and the cost of such a
mechanism The Crystal MulticomputeI is designed to be used as a
tool for research in distributed systems It consists of 20 VAX-
11/75Os connected by a 80 Megabivsec Roteon ProNet. Crystal has
been used for many projects in distributed systems which include
distributed databases, algorithms, operating systems, and others
[12,19-211. The remote Unix facility allows the Crystal Multicom-
puter to be used as a "cycle server". A cycle sewex provides comput-
ing capacity beyond what the local wo~kstations provide. It extends
the idea of Unix forking of a background process so that the new
process executes on a clystal machine. When remote Unix is expli-
citly invoked, a shadow process on the host machine runs locally as
the sumgate of the process running on the remote machine Any
Unix system call of a program running on the remote machine causes
a trap. A message indicating the type of system call is sent to the
shadow process on the host machine This remote Unix facility
serves CPU-bound type jobs well Long running simulation pro-
grams are an obvious application for it

The checkpointing of a program is the saving of an intermedi-
ate state of the program so that its execution can be restarted from
this intermediate state. The state of a remote Unix program is the
text, data, bss, and the stack segments of the program. Along with
the registers W i g used by the program, any messages sent by the
program that have not yet been received have to be saved The text
segment contains the executable code, the data segment contains the
initialized variables of the program, and the bss segment holds the
uninitialized variables. The implementation copies the data, bss, and
the stack segments, and the program xegisters from the remote pro-
cessor to the origin workstation The text segment is kept in the load
module file, and is not copied from the remote processor since we
assume the text segment will not be modified. A checkpoint will not
be taken whenever there is an outstanding message from the remote
end. This can be guaranteed since every message that the remote pro-
cessor sends expects a response. If at checkpoint time the remote
node has not received a response to a message it sent, then the check-
point will be delayed for a short while until there are no outstanding
messages

The implementation allows two different ways to initiate the
saving of a checkpoint. The checkpoint can be triggered externally
by a signal, or internally by the expiration of a checkpoint timer. The
program can be restarted from a checkpoint file by setting a com-
mand line parameter to do so A newer version of remote Unix
checkpointing has been implemented by Litzkow [16] for both the
Crystal Multicomputer and the network of MicroVAX 11 worksta-
tions which has an added feature of spooling background jobs. The
delay caused by checkpointing on the Crystal Multicomputer has
been determined to be about $5 minute for a checkpoint file size of 1
megabyte The capacity consumed by a local workstation in order to
checkpoiit a remote jobs in a network of workstations was measured
to be approximately 5 seconds of 8 U time per 1 megabyte of
checkpoint file

4

4. The Simulation Study Model
We need to model oux LOCOX network with a schedule1 in

order to study its behavior and evaluate its pexfoxmance Oux model
for the study of long texm scheduling algoxithms consists of a net-
work of woxkstations and a processox bank. Table 2 shows the
parameters of the model. The numbex of workstations is designated
by NwnWorkstatiom and the processox bank size by BankSize
Workstations will eithex be in the AV ox NA state These states axe
determined by the woxkstation workload pattern discussed in section
2

Parmeter
servemean(i)

arrive(i)

N&ermanent(i)

Sch&nterval
J&"2rCost

SimTime
N~Workstationr
BankSize

Meaning
Exponentially distributed mean

service time at workstation i
Exponentially distributed mean

interaxxiVal time of jobs at woxkstatiOn i
Number of jobs woxkstation i permanenfly

wishes to execute
Pexidc scheduling intexval of the CWrdkatOX
Time it takes to checkpoint a job and

move it xemotely
Length of simulated time
Numbex of workstations simulated
Number of processox bank nodes

cessor sharing scheduling with a system of one remote processox to
be shared by two workstations Suppose each workstation's state is
in the AV state 50% of the time The remote processox is scheduled
using processox shaxing The local workstations would only be used
as extra remote capacity if theix state is AV and the workstation had
no local background jobs to run Suppose User I has two back-
ground jobs ready to execute all the time User 11 has one back-
ground job ready to execute all the time Usex I1 would use its local
woxkstation fox its background job 50% the time and the remaining
time it would be forced to share the remote pxocessox with User I
Usex I would use its local workstation whenever it is available, and it
would request use of the remote processor all the time User I would
have no contention fox the xemote pxocessor's cycles 50% the time
and share it the remaining time The remote cycle wait ratio fox Usex
I would be 3 since 75% of the time the heavy user would receive all
the computing capacity of the remote processor, and 25% of the time
User I would wait without being allocated remote capacity Usex I1
would be allocated 25% of the remote cycles, and would have to
wait 25% of the time to receive those cycles without any allocation
given. Its remote cycle wait ratio is 1. In this example, we see that
processor sharing causes User I1 to wait 3 times mole for each cycle
allocated than User I. User II is also allocated less remote cycles in
proportion to what is given to Usex I User I1 would like to receive
50% of the remote processor's cycles, but it only receives 25% Usex
I would like to receive 100% of the remote processor's cycles, but
receives 75%. Usex I1 receives 50% of the remote processor's cycles
it xequested while Usex I receives 75% of its request

We consider past histoxy when allocating xemote cycles to pro-
vide fair access for users with different loading patterns To be fair,
the algorithm considers past behavior by trading off the amount of
execution time allocated to a user and the amount of time the user
has waited fox an allocation Since we assume that all workstations
are entitled to equal rights, heavy users should not be allowed to
dominate the remote cycles at the expense of light users Algorithms
that do not conside1 past behavior do not protect light usexs Light
users with steady demand will have increasing remote cycle wait
ratios as heavy useis increase their demand Heavy users will have
greate1 throughput with a naive algorithm when compaxing it to the
Up-Down algoxithm, but the ovexdl throughput of the system will be
as good when using the Up-Down algorithm A description of the
Up-Down algoxithm follows

5.1. The Up-Down Algorithm
In this algorithm, the scheduling cooxdinatox bases its decisions

on an allocation table called the schedule index table, SZ An entry
SZ[z] is the schedule index for woxkstation i The values of the SZ
table are used to decide which woxkstation is next to be allocated
remote capacity Workstations with smaller SZ entries are given
pxiority over workstations with laxgex SZ entries Any time two ox
more workstations with the same schedule index contend fox cycles,
the woxkstation allocated the cycles is xandomly chosen INtially,
each entry of the table is Set to zero. The values of the SZ table axe
updated on a periodic basis and whenevex new capacity becomes
available to the system This occurs when

0 a scheduling interval Schedlnterval has expired
a station's state goes from NA to AV

0 a remote job completes and leaves the system

-

The scheduling intexval should not OCCUI too often due to the over-
head of placing and preempting jobs on a remote processor, and it
should occur often enough to give stations with low SI entries access
to a node without too much waiting The workstation that mnts a
node but does not have one wil l preempt a workstation that has one
if its SJ[i] i s smaller than the workstation with the node. No works-
tations with smaller SZ entries that have already acquired xemote
cycles for the next interval can pxeempt other workstations with
larger SZ entries. Table 3 outlines the allocation algorithm fox

3

remote cycles.
We want the algorithm to adjust to changes in background load

patterns For each scheduling interval, each station is given a reward
or penalty depending whether the station has been granted remote
cycles or has waited but has not received any. Light users that
increase their loads will have their priority decreased so that they
will be considered heavy users, and heavy users that decrease their
loads will be considered light users However, the algorithm should-
be sensitive only to significant changes Table 4 summarizes the
update policy for the SI table. FOUI schedule index functions (f, g, h,
and r) are employed to adjust for changes in load patterns The func-
tionfis the assessed reward per remote processor received by works-
tations (amount SI entry is increased) for using remote cycles This
function would cause a light user that increases its load significantly
to have its priority decreased until it is viewed no differently from a
heavy user The function g is the accessed penalty received by
workstations (amount SI entry is decreased) fox waiting for cycles.
The SI entry is decreased by the amount of the function g if a station

Ulocation Of Remote Processing Nodes For Background Jobs

at each scheduling interval (
Sl t [bag of wakstations that have nodes allmted I
S2 t [set of workstation that want nodes allocated 3

1
for the number of nodes free(

ifS2 <> EMPTY (
s = workstation in S2 with smallest SI entry
allocate a node to s
s2 t s2 - [sl

1
else bxe&,

while S2 <> EMPTY (
s = woxkstation in S2 with smallest SI entry
t = workstation in S1 with largest SI entry
if SI[sJ < SI[tJ (

1 -t

preempt a node from t
allocated a node to s
s2 t. s2 - s
S l <-s1 - t

1
else break;

1
Table 3

wants a remote processor but was denied one The functions h and 1
stablize the priority of the workstations when they do not want
cycles Any station that does not want a remote processor and has a
positive SI entry will have its schedule index decreased by the func-
tion h each time the SI[i] table is updated until the entry reaches
zero. This means that a heavy user that significantly decreases its
load will have its index lowered until it is viewed no differently from
a light user. Any station that does not want a remote processor and
has a negative SI entry will have its entry increased until it reaches
zero according to function 1. Once a station’s SI entry reaches zero,
it will stay there until it asks for a processor

FiguIe 2 illustrates how the Up-Down algorithm modifies the
SI table The figuxe represents the value of the inde
SI[i], over time The figure shows how the index for a station
changes when a station waits to receive remote cycles, when remote
cycles are allocated, after a job has completed, and when there is no
need for remote cycles Depending on the accessed reward and
penalty received by each station, the index for each station goes up
and d o m . This gives the name to the Up-Down algorithm. In figure
2, the SI[i] is initially zero. When a job arrives and there is no allo-
cation given, the index decreases according to g(SI[i]) After an

allocation is made, the index rises according to f(SI[i]). If two allo-
cations are given, the index rises twice as fast, namely, 2*f (SI [i])
The completion of one of the jobs causes the index to rise according
to f(SZ[i]) When the second job completes and there are no alloca-
tions or jobs waiting, the index decreases to zero by the function
h(SI[i]).

5.2. Algorithms Used For Comparisons
For comparison with the Up-Down algorithm, we have selected

two algorithms that do not use past behavior when deciding how to
allocate remote capacity The two selected are the Random and
Round-Robin algorithms, which are non-preemptive algorithms We

I

Modification Of The Schedule Index Table (Sr)
During Each Scheduling InteIval
Fox Each workstation (2)

fox each i (
if i wants a remote processing node (

if i has a node then SI[iJ :=

else SI[iJ = SI[iJ - g(SI[iJ);
SI[iJ i NumProcessors*f(SI[iJ~;

I
elsif SI[iJ > 0 then SI[iJ = SI[iJ - h(SI[iJ);
elsif S[iJ < 0 then SI[i] = SI[iJ i I(SI[i]);

1

Table 4

SI[i]

0

Allocation
FiguIe 2: Modification Of Station i Schedule I

6

The Round-Robin scheduling algorithm requires the scheduling
coordinator to maintain a cyclic order whenever it allocates remote
cycles to requesters Each workstation is given a chance in a particu-
lax order to receive remote cycles If the station does not need them
when its chance occurs, it will have to wait until everyone else gets
one chance Once allocated a remote processor, a workstation keeps
the allocation until either the job terminates or the remote processor
becomes busy with some local activity When a remote job com-
pletes, the available processor returns to the pool of free processors
If remote processors are available but no workstation wants them, the
scheduling coordinator periodically checks for new background jobs,
with interval Schedlnterval

53. Simulation Study Results
In order to evaluate the performance of the Up-Down algorithm

and the two naive algorithms, we conducted a simulation study using
the DeNet [23] simulation language DeNet is a discrete event simu-
lation language built on top of the general purpose programming
language Modula-2 [24]. The simulation study was done with the
simulation parameter settings shown in Table 5 We have assigned
NumWorkstatzons with a value of 13 which is the number of works-
tations we monitored We ran two sets of experiments One with a
BankSize of zero which represents an environment with no dedicated
processors The second has a BankSzze of 5 These two experiments
enabled us to examine the impact of augmenting a system of private
workstations with additional cycles

To show how workstations with a light background load per-
form in the face of different demand levels from heavy users, we
made all but two of the workstations in the experiments to have a
light user, labeled by Lightstatlorn One of the two remaining sta-
tions is designated as Mediumstation and the other is designated as
HeavyStation. The Mediumstation has two permanent jobs ready for
execution (NumPermanent(MediumStanon) = 2) EOI the HeavySta.
tion, we varied NumPermanent(HeavyStation) from 2 to 13 jobs
The background jobs have a mean service demand of 2 hours
(servemean(z) = 2, for all 1)

Table 6 summarizes the schedule index functions selected for
the Up-Down algorithm We have observed that at high utilizations,
the SI of a station might become very large and would slowly reach
zero when the station changes from a heavy to a light load We
chose to focus on the function g to control the time it takes for
station's index to reach zero Functions f , h, and I will always return
one as their value We ran the simulation for about two years of
simulated time to observe steady state behavior

Our results show that the Up-Down algorithm maintains a fair
allocation of resources to all types of users Whereas under the
Random and Round-Robin algorithms, heavy users receive favorable
treatment We compared the performance of the three algorithms

Parameter
servemean(i)
arr ive(LightStati0n)
a n ive(MediumStation)
arrive(HeavyStatcon)
NumPer manent(Lig htStation)
N u d e r manent(MediumStation)
NumPermanent(HeavyStati0n)
Schedlnterval
JobTraMerCost
SimTime
NumWorkstations
BankSize

Value ' -
2 hours for all stations i
2000 minutes
no such arrivals
no such arrivals
0
L

2-13
10 minutes
1 minute
2 years
13
0 for fust experiment,

5 for second experiment
Table 5 Simulation parameter Settings

using the criteria defined in the intxoduction which are: (1) the
remote cycle wait ratio, (2) the remote cycle percentage of light
users, and (3) the Iemote response time The remote cycle wait ratio
of Lightstations is computed by averaging the local remote cycle
wait ratios of the individual Lightstations Likewise, the remote
response time of LzghtStations is computed by averaging the local
remote response times of the individual LzghtStations On the basis
of these criteria we will show that the quality of service LzghtStu-
tzons and MediumStatzon enjoy in face of increasing loads of the
HeavyStation remains steady when we use the Up-Down algorithm
When we use the Random and Round-Robin algorithms, the quality
of service for Lightstations and Medzurdtation suffers as HeavySta-
tion increases its load

h (Si [il)=l, fox all t

1, SI[z]<3

2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3
NumenmananrMcnvyStatm)

Figure 3
Remote Cycle Wait Ratio

(Lightstations)
No Rocesso~ Bank

Table 6

Figue 4
Remote Cycles Wait Ratio

(MediumStation)
No Rocessor Bank

5.3.1. Experiment 1: System Of Workstations Without Processor
Bank

Heavy users want to separate their work into many jobs in
order to take advantage of the huge amount of remote cycles avail-
able This activity is encouraged so that the system can be utilized
as much as possible However, the heavy users can inhibit the light
users' access to remote resowces T h i s is what occurs with the Ran-
dom and Round-Robin algorithms The Up-Down algorithm enables
light users to maintain fair access to remote resources while still
allowing heavy users use an abundant supply of remote cycles

We used the outliied performance criteria to compare the Up-
Down algorithm with the Random and Round-Robin algorithms
We see in figures 3 through 7 that the UpDown algorithm maintains
an improved and stead.) quality of service for non-heavy useIs The
quality does not depend on the usage pattern of heavy users Figure
3 presents the remote cycle wait ratio of LzghtStations as a function

7

