
A MATCHMAKING APPROACH FOR

DISTRIBUTED POLICY SPECIFICATION

AND INTERPRETATION

By

Nicholas Coleman

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OFPHILOSOPHY

(COMPUTER SCIENCES)

at the

UNIVERSITY OF WISCONSIN – MADISON

2007

i

Abstract

In a distributed system, the separation of policy and mechanism is a vital principle.

This separation can be achieved by devising a language for specifying policy and an

engine for interpreting policy. In the Condor [52] high throughput distributed system

the ClassAd language [57] is used to specify resource selection policy and match-

making is used to interpret that policy. ClassAds and matchmaking are not currently

used for authorization policies in Condor. SPKI/SDSI [21] is a public key infrastruc-

ture for authorization policy. This dissertation shows that ClassAds and matchmak-

ing can implement SPKI/SDSI, thereby complementing the resource selection policy

capabilities of Condor with the authorization policy capabilities of SPKI/SDSI. Tech-

niques for policy analysis in the context of resource selection and authorization are

also presented.

The ClassAd language is based on the concept of classified advertisements. En-

tities in Condor are represented by classified advertisements or ClassAds. Each job

submitted by a condor user has a corresponding ClassAd as does each compute ma-

chine. The matchmaking process pairs jobs with machines based on the policies

expressed in their ClassAds. Since the bilateral matchmaking framework is not suf-

ficient for assembling three or more parties a multilateral matchmaking framework,

gangmatching, is required in such cases. A collection of three or more ClassAds that

satisfy each others requirements is called agang.

ii

SPKI/SDSI is an infrastructure for expressing authorization policy using public

key encryption. Two kinds of certificates can be issued by a principal. Anauthoriza-

tion certificategrants another principal a set of access rights for a resource as well as

the permission to delegate these rights to other principals. A name certificatecreates

a name for another principal or set of principals. A combination of several certifi-

cates that authorize a principal to access a resource is called acertificate chain. The

problem of assembling a suitablecertificate chainfor a given authorization is called

thecertificate chain discovery problem[12].

In the case of bilateral matchmaking, this dissertation presents analysis tech-

niques for solving two key problems:I Don’t Like AnyoneandNobody Likes Me.

The I Don’t Like Anyoneproblem occurs when the resource selection policy for a

resource request rejects all available resources. TheNobody Likes meproblem oc-

curs when the resource selection policies for resource offers reject a given resource

request.

Furthermore, this dissertation presents a representationof SPKI/SDSI certificates

using the ClassAd language in a gangmatching context. A ClassAd representing a

certificate is composed of several nested ClassAds calledports. One of these ports

offers the certificate for use in a chain. If needed, additional ports request other

certificates to resolve a SPKI/SDSI name or delegate an authorization. A gang of

such ClassAds corresponds to a chain of certificates.

In order to support the capability to reuse a certificate indefinitely in a chain while

avoiding infinite loops, a modified algorithm for gangmatching is presented. Formal

iii

definitions of the static and dynamic structures used by thisalgorithm are stated along

with formal definitions of the concepts ofequivalence, evaluation, andvalidity. The

algorithm itself is then presented, its correctness is proved, and its complexity is

analyzed.

In the case of multilateral matching, two more matchmaking analysis problems

are presented along with their solutions:Break the ChainandMissing Link. The

Break the chainproblem occurs when an authorization policy grants an access that

needs to be revoked. To revoke an authorization, a set of certificates must be in-

validated such that no chain can be constructed granting theauthorization. A new

algorithm using the results of the gangmatching algorithm identifies a set of Class-

Ads representing such certificates. TheMissing Linkproblem occurs when a desired

authorization is not granted by any certificate chain. A modified version of the gang-

matching algorithm identifies the additional certificate ClassAds needed to complete

a gang representing a chain of certificates granting the desired authorization.

The algorithms and strategies presented in this dissertation comprise a rich frame-

work for policy specification and interpretation suitable for resource selection and

authorization. The use of the ClassAd language for policy specification and match-

making for policy interpretation achieves a separation of policy and mechanism. The

combination of supporting resource selection policies andauthorization policies pro-

vides robust support for resource allocation in a distributed environment. The tech-

niques for matchmaking analysis provide a means for understanding why existing

policies do not produce desired results.

iv

Acknowledgments

First and foremost I would like to thank Dr. Miron Livny and Dr. Marvin Solomon

for giving me the opportunity to work on the Condor project for seven years. Many

thanks to the ever expanding Condor team, both students and staff. The experience

and wisdom I gained working on Condor has been significant, though the most sig-

nificant piece of wisdom is that I still have so much more to learn. In particular I

would like to thank Pete Keller, Peter Couvares, Todd Tannenbaum, Derek Wright,

Dr. John Bent, Dr. Doug Thain, Ian Alderman, Nick LeRoy, and Dr. Alain Roy for

guiding me through the maze that is Condor. I would also like to thank Dr. Marvin

Solomon for his patience, frank advice, stories from the good old days of Computer

Science, and most particularly for believing in me when it seemed that no one else

would.

Several people helped with editing earlier versions of the material in this disser-

tation including Dr. Hao Wang, Dr. Stefan Schwoon, Dr. John Bent, Dr. Somesh

Jha, Dr. Rajesh Raman, and Dr. Marvin Solomon. My research would not have

been possible without the strong shoulders of Dr. Rajesh Raman, the inventor of the

ClassAd language and gangmatching, to stand on. Though it iscited many times

in this work, I must make special mention of the work by Dr. Somesh Jha and Dr.

Tom Reps on SPKI/SDSI and Pushdown systems, which served as astarting point for

my exploration of gangmatching and SPKI/SDSI. My sincere gratitude goes to Dr.

v

James Cercone and the Department of Computer Science at WestVirginia University

Institute of Technology for providing me with an opportunity to work at Tech as a

Visiting Professor, without which the completion of my degree would not have been

possible. I might have never applied to graduate school if ithadn’t been for the en-

couragement of Dr. James Lipton at Wesleyan University, whoalso first introduced

me to programming language theory and mathematical logic.

Last, but certainly not least, I would like to thank my familyand especially

my fiancée Heather James for a seemingly infinite amount of patience and support.

Heather has stuck with me through thick and thin, and has continued to have faith in

me even when I had little faith in myself.

vi

Contents

Abstract i

Acknowledgments iv

1 Introduction 1

2 Background 6

2.1 The ClassAd Language and Gangmatching 6

2.2 SPKI/SDSI . 9

3 Matchmaking Analysis 12

3.1 I Don’t Like Anyone . 15

3.1.1 Detecting Conflicts . 18

3.2 Nobody Likes Me . 22

4 ClassAd Representation of SPKI/SDSI Certificates 28

4.1 Transforming SPKI/SDSI Certificates to ClassAds 29

4.2 Compatibility and Composition . 29

4.3 Name Resolution . 30

4.4 Authorization and Delegation . 34

4.5 Certificate Chain Gangmatching 37

vii

5 Gangmatching: Structures, Concepts and Algorithms 45

5.1 Gangmatching Structures . 47

5.1.1 Static Structures . 49

5.1.2 Dynamic Structures . 51

5.2 Gangmatching Concepts . 54

5.2.1 Equivalence . 55

5.2.2 Partial Evaluation and Validity 57

5.3 Gangmatching Algorithm . 60

5.3.1 Correctness . 66

5.3.2 Complexity . 70

6 Gangmatching Analysis 75

6.1 Break the Chain . 78

6.2 Missing Link . 81

7 Related Work 89

7.1 Matchmaking . 89

7.2 Resource Management . 91

7.3 Trust Management . 92

7.4 Policy Languages and Frameworks 93

7.5 Query Analysis . 95

8 Conclusions and Future Work 98

viii

Bibliography 102

1

Chapter 1

Introduction

One of the challenges of distributed computing environments is the specification and

interpretation of policy. The separation of policy and mechanism has long been one

of the key principles in systems design. This principle simplifies the specification

of policies and keeps them independent of implementation changes. One way of

achieving separation is to provide a policy framework consisting of a language for

specifying policies and an engine for interpreting these policies in the context of a

given set of system conditions. The flexibility of such a framework is particularly

suitable for resource allocation policy in a distributed system.

Distributed systems are dynamic in that principals and resources may join or leave

the federation at any time. Allocation of resources in a decentralized environment re-

quires policy for resource selection and access control. Resource selection is the

process of finding resources that satisfy a principal’s requests. Access control poli-

cies determine whether the principal is permitted to accessthe resources. Currently

there is no single language or framework that deals with authorization and resource

selection policies.

Advertising languages such as the ClassAd language used by Condor [52], a

widely used production-quality distributed computing system, provide a means for

2

expressing resource selection policies. Offers and requests for resources are repre-

sented by classified advertisements (ClassAds). These ClassAds are then subjected

to a matchmaking process that attempts to find compatible offers for a given request

and pick the “best” offer as determined by the requester’s preferences and system

wide policies. Access control policy in Condor is not specified in this fashion; in-

stead, policy is expressed in a configuration file. Furthermore the allowed or denied

accesses are at the granularity of a single machine, not individual files or devices on

that machine [1].

Trust management systems [9] like SPKI/SDSI [21] define formal languages for

expressing access control policies in distributed environments and provide algorithms

to determine if a principal is authorized to access a resource. SPKI/SDSIname cer-

tificatesdefine a name space that allows a principal to refer to other principals indi-

rectly. SPKI/SDSIauthorization certificatesgrant a principal access to a resource,

and may allow the principal to delegate that access. A principal must present a set of

these certificates, called acertificate chain, to gain access to a resource. The problem

of marshaling such a set is known ascertificate chain discovery. Solutions to this

problem based on formal language techniques can be found in [12, 29].

An implicit assumption in these systems is that policies forresource selection and

access control are independent of one another. This assumption fails when a resource

that satisfies a principal’s requirements is selected, but cannot be accessed by the

principal without proper credentials. One solution to thisproblem is use a multilat-

eral matchmaking organgmatching[53] paradigm to select resources and assemble

3

the credentials necessary to access those resources. Gangmatching, described more

thoroughly in [51], does not address the situation where an unspecified quantity of

credentials is required to access a resource, as is often thecase in a trust management

system like SPKI/SDSI.

The major contributions of this dissertation are as follows:

• A framework for the bilateral matchmaking analysis used by Condor to iden-

tify problems with resource selection policies. This framework is applied to

the problem in Condor of identifying why a job can not be matched with any

available machines.

• A framework for multilateral matchmaking analysis with applications for iden-

tifying problems with authorization policies. The specificauthorization prob-

lems are the failure of a desired authorization and the success of an undesired

authorization.

• A ClassAd representation for SPKI/SDSI certificates that allows certificate

chains to be assembled using a gangmatching algorithm. The construction

of certificate chains from these ClassAds correctly implements SPKI/SDSI se-

mantics for certificate compatibility and composition.

• An enhanced gangmatching algorithm capable of assembling certificate chains

comprised of an unspecified quantity of certificates.

4

• Formal definitions of structures and concepts employed in the enhanced gang-

matching algorithm. The primary concepts involved are equivalence of inter-

mediate structures and partial evaluation of ClassAd expressions.

A working definition of policy is needed before discussing the details of the

framework for policy specification and interpretation. TheIETF Networking Group

defines policy in two ways [66]:

1. A definite goal, course or method of action to guide and determine present and

future decisions.

2. A set of rules to administer, manage, and control access tonetwork resources.

More informally, Arpaci-Dusseau et al [4] define policy as the scheme for deciding

what should be done.

When discussing policy it is also important to distinguish betweenspecification,

interpretationandenforcement. In order to specify policies robustly one needs a lan-

guage that can describe the principals in a system, the stateof the system or parts

thereof, and conditions that must be satisfied. Once one is able to specify policies

a facility is needed to interpret them in a given context. Theinterpretation stage is

where the policy decisions indicated by the above definitions are made. Finally, once

a given decision is made actions must be taken to enforce the decision. This dis-

sertation lays out a matchmaking framework using the ClassAd language to provide

policy specification and interpretation for distributed systems.

Chapter 2 provides background information on ClassAds, gangmatching, and

5

SPKI/SDSI. Chapter 3 presents an analysis framework for bilateral matchmaking

with the ClassAd language. Chapter 4 describes a ClassAd language representation

of SPKI/SDSI certificates, shows that a matching set of theseClassAds is equiva-

lent to a corresponding certificate chain, and recasts the certificate chain discovery

problem as a gangmatching problem. Chapter 5 presents a gangmatching algorithm

that can handle the reuse of ClassAds, necessary for SPKI/SDSI certificate chain

discovery, and shows that the application of the algorithm to ClassAds representing

SPKI/SDSI certificates has the same worst case time complexity as thepost* algo-

rithm for certificate chain discovery presented in [29]. Chapter 6 extends the bilateral

matchmaking analysis framework to gangmatching. Chapter 7explores related work,

Chapter 8 presents directions for future work and concludesthe dissertation.

6

Chapter 2

Background

2.1 The ClassAd Language and Gangmatching

The ClassAd language is used by Condor primarily to advertise resources and re-

quests for those resources in a distributed environment. Anadvertisement, called a

ClassAd, represents an offer of or request for a resource and consists of named de-

scriptive attributes, constraints and preferences. The constraints are expressed by an

attribute namedRequirements, and the expression of the preferences is named

Rank. 1 A matchmaking process is used to discover offers and requests that satisfy

one another’s constraints and best suit one another’s preferences. If more than two

parties are involved – such as a job, a machine, and a license –a bilateral matchmak-

ing scheme is insufficient and a multilateral framework, called gangmatching[53],

must be used.

In the gangmatching framework a multilateral match is broken down into several

bilateral matches. A set of ClassAds that satisfy one another’s constraints is called a

gang. Each ClassAd contains a list of nested ClassAds calledports, each of which

1To simplify matters this dissertation deals only withRequirements expressions and omits
Rank expressions from example ClassAds.

7

represents a single bilateral match. A gang iscompleteif all ports of all ClassAds

in the gang have been successfully matched to ports of other ClassAds in the gang.

A port that has not been matched is anopenport. Given a portP of a ClassAd and

a potentially matching portP ′ of another ClassAd, a reference inP to an attribute

attr defined inP ′ is represented asother.attr to distinguish it from a reference

to an attribute inP . In addition,P has a label that is used by subsequent ports in

the same ClassAd to reference attributes defined inP ′. If P ’s label islabel, a

reference in a subsequent port to an attributeattr defined inP ′ is represented as

label.attr. The attributeattr is importedfrom P ′ and is called animported

attribute.

Figure 1 shows a gangmatching ClassAd representing a job. The ClassAd has two

ports: the first requests a machine to run the job, and the second requests a license

to run a particular application on that machine. In theRequirements expression

of the first port of the job ClassAd, a reference to the attribute Memory, imported

from a matching ClassAd representing a machine, is expressed asother.Memory.

The port is labeledcpu, and the subsequent port contains a reference to theName

attribute imported from the ClassAd matching the first port expressed ascpu.Name.

In contrast, a locally defined attribute likeImageSize is referenced locally without

using a prefix.

A gang is tree-structured, which means that some ClassAds may not express con-

straints on other ClassAds directly. For example, in Figure1 the job ClassAd con-

tains a port requesting a machine and another port requesting a license. The license

8

[
Ports = {

[// request a workstation
other = cpu;
Type = "cpu_request";
ImageSize = 28M;
Requirements =
other.Type == "Machine" &&
other.Arch == "INTEL" &&
other.OpSys == "LINUX" &&
other.Memory >= ImageSize

],
[// request a license

other = license;
Type = "license_request";
CPUName = cpu.Name;
Cmd = "run_sim";
Requirements =
other.Type == "License" &&
other.App == Cmd

]
}

]

Figure 1: A gangmatching ClassAd for a job

and machine ClassAds that match may each contain a port expressing constraints

on the job, but may not have ports expressing constraints on one another. This re-

striction can be circumvented if the job exports attributesimported from the machine

ClassAd in the license port. In Figure 1 theName attribute of thecpu ad is ex-

posed in the license port by the definitionCPUName = cpu.Name. The matching

license ClassAd can indirectly reference theName attribute of the machine ClassAd

asother.CPUName. Circular dependencies are avoided by the restriction thata

port may only use imported attributes from previous ports.

9

2.2 SPKI/SDSI

SPKI/SDSI is a trust management system that specifies accesscontrol policies using

certificates. A SPKI/SDSI certificate is a declaration by a principal, theissuerof the

certificate, about the naming of another principal, thesubjectof the certificate, or the

authorization for the subject to access a resource.

Principals are represented by a unique public key. They may also be referred

to indirectly by aSPKI/SDSI name. A SPKI/SDSI name consists of a public key

followed by zero or more identifiers. The identifiers navigate a hierarchical name

space, similar to a hierarchical directory structure. For example, ifKA represents the

principal named Alice, then the SPKI/SDSI name “KA Bob Carol” can be resolved

by looking up the identifier “Bob” in Alice’s namespace. Assuming thatKA Bob

resolves toKB, Bob’s public key, the identifier “Carol” must now be looked up in

Bob’s namespace. If Bob has defined the identifier “Carol” to resolve toKC , Carol’s

public key, then “KA Bob Carol” is equivalent to the SPKI/SDSI names “KB Carol”

and “KC .”

A name certificate (name cert) defines a name in the issuer’s local name space by

assigning an identifier to a SPKI/SDSI name that represents the subject of the certifi-

cate. An authorization certificate (auth cert) indicates that the issuer (represented by

a public key) authorizes the subject (represented by a SPKI/SDSI name) to access a

resource. Both the resource and the permission being granted are specified in an auth

cert. For the purposes of this dissertation we are only concerned with a single anony-

mous resource and a generic operation on that resource. An auth cert also indicates

10

whether or not the authorization may be delegated.

In this dissertation we shall adopt the representation of certificates as rewrite

rules with the issuer on the left and the subject on the right as introduced in [12].

Four examples of this rewrite rule representation are shownin Figure 2.

(1)KR �→KA Bob�

(2)KA Bob→ KB

(3)KB �→KB Carol�
(4)KB Carol→KC

Figure 2: SPKI/SDSI certificates as rewrite rules

There are four principals involved in the example certificates in Figure 2: the

administrator of resourceR (identified by the public keyKR), Alice, Bob, and Carol

(identified by their public keysKA, KB, andKC). Certs (2) and (4) are name certs

that indicate that the identifier “Bob” in Alice’s name spacerepresents Bob’s key, and

the identifier “Carol” in Bob’s name space represents Carol’s key. Certs (1) and (3)

are auth certs, denoted by the� after the subject. In cert (1), the subject “KA Bob”

is granted access to the resourceR. The� at the end indicates that the subject may

delegate this access right. Similarly, cert (3) grants the subject “KB Carol” access to

whateverKB has access to. The� at the end of this cert indicates that the subject

may not delegate this access right.

The use of delegation and an indirect naming scheme means that more than one

certificate may be necessary for a principal to access a resource. Such a set of one

or more certificates is called acertificate chain. A certificate chain may also be

represented by a rewrite rule, derived from the compositionof compatible certificates.

11

As defined in [12], certsC1 = K1 A1 → S1 andC2 = K2 A2 → S2 arecompatible

if S1 = K2 A2 X for some sequence of zero or more identifiersX (that isK2 A2

is a prefix ofS1). Thecompositionof C1 andC2, written asC1 ◦ C2 is defined by

replacing the prefix ofS1 with S2. Using the term rewriting notation:

C1 = K1 A1→ K2 A2 X

C2 = K2 A2→ S2

C1 ◦ C2 = K1 A1→ S2 X

Certificate chains are built by repeated use of composition.

Returning to the examples in Figure 2, we can form cert chainsby composing

compatible certificates. (1)◦ (2) =KR �→KB � authorizesKB to access resource

R and to delegate that access right; (3)◦ (4) =KB �→ KC � grantsKC access to

whateverKB has access to. Putting these two chains together we get the chain ((1)◦

(2)) ◦ ((3) ◦ (4)) =KR �→ KC � that authorizesKC to access resourceR, but not

to delegate that access right. The problem of assembling such a chain is called the

certificate chain discovery problem. Solutions based on formal language techniques

can be found in [12, 29].

12

Chapter 3

Matchmaking Analysis

Occasionally in Condor a submitted job’s ClassAd does not match with any machine

ClassAds. This situation occurs when none of the machines meet the submitted job’s

requirements, when the job does not meet the requirements ofthe machine candi-

dates, or a combination of these two circumstances. In this chapter we will treat the

first two problems separately and assume that they are not related. Using a dating

service analogy we refer to the first case asI Don’t Like Anyoneand the second as

Nobody Likes Me.

Requirements expressions are most commonly indisjunctive normal form(DNF),

a disjunction of conjunctions of atomic Boolean propositions. In most requirements

expressions the atoms are in the form of predicates that relate an attribute to a literal

value or constant by means of a comparison relation. An example of such a predicate

is

other.OpSys == "LINUX".

We shall often refer toclausesthat are conjunctions of predicates in this form. An

example of such a clause is the following:

13

(other.OpSys == "LINUX") &&

(other.Arch == "INTEL") &&

(other.Memory >= 512M)

In the majority of ClassAds a requirements expression consists of a single clause but

sometimes they are disjunctions of such clauses. We shall assume all requirements

expressions are in DNF. There are well known algorithms for transforming arbitrary

arbitrary expressions into this form, but we find that in practice, most requirements

are already in DNF. Additionally any atom that is not in the form of a predicate as

we have described may be treated as an atom that cannot be modified.

We may look at the matchmaking process geometrically, wherethe collection

of attributes with literal values in a ClassAd is represented by a point inn dimen-

sional space where each dimension corresponds to a single attribute andn is the total

number of attributes in the ClassAd. Clauses are represented in this space byn di-

mensional rectangles, orhyper-rectangles. The I Don’t Like Anyonecase consists

of a single hyper-rectangle (the job requirements expression) and many points (the

machine ClassAds) that lie outside the hyper-rectangle. The goal is to expand the

hyper-rectangle to enclose at least one point. TheNobody Likes Mecase is the re-

verse with many hyper-rectangles (the machine requirements expressions) and one

point (the job ClassAd) that lies outside their union. Here we wish to relocate the

point so that it lies within some hyper-rectangle.

In both cases we need a measure of distance between a point anda hyper-rectangle

so that we can make the smallest adjustment possible. A number of factors come into

14

play here: the number of predicates or attributes we have to modify, how much we

have to modify a given predicate or attribute, how many matches will we get for a

given set of modifications, and what kind of machines will we match with. A simple

algorithm would be to focus exclusively on the first factor, but there may be situa-

tions when several minor modifications are more attractive than one major one. A

more complex algorithm would give weights to different job or machine attributes,

and in the case of attributes that take non-numerical valuesidentify which values are

“closer” than others. This would require collecting a substantial amount of informa-

tion from the user.

The distance metric we shall use lies somewhere between the simple and complex

approaches. First, we calculate the distance in each dimension separately. For numer-

ical values the projection of the hyper-rectangle is an interval or (infrequently) a set

of intervals. We begin by computing the absolute value of thedifference between the

base point and the closest point in the interval. We then divide this difference by the

difference between the maximum and minimum values taken by the given attribute.

For non-numerical values the projection of the hyper-rectangle is a point (or set of

points) and the distance between two points is zero if they are equivalent and one

otherwise. This definition assures that regardless of type,one dimensional distance

will always be between zero and one inclusive. Finally we sumthe one dimensional

distances to get a composite distance. Taking the sum (sometimes known as the

“taxicab norm”) is preferable to using the Euclidean norm asit favors modifying a

smaller number of predicates or attributes.

15

In the I Don’t Like Anyonecase, we can also detectconflictswithin the require-

ments expression, that is identify which predicates in a requirements expression

clause are incompatible with one another. This situation may arise out of user er-

ror, such as misspelling an attribute or a string value. Alternately there may simply

be no machines that satisfy a certain combination of predicates. If this is the case it

would be useful to identify the smallest subset of predicates that cannot be satisfied.

3.1 I Don’t Like Anyone

First, we shall examine the case where no available machinesmatch a submitted job’s

requirements expression. Depending on ones point of view, the problem is either with

the requirements expression of the job, or with the attributes of the various machine

ClassAds that are referenced in the job’s requirements. As ClassAd analysis is pri-

marily concerned with aiding the user who has submitted the job we shall focus on

the job’s requirements expression. First we must indicate which predicate or com-

bination of predicates in a given clause is causing the problem. Once the offenders

have been identified we may use the machine ClassAds to suggest possible modifica-

tions to the expression. It may well be that the job requirements are non-negotiable,

and may not be relaxed or modified. In this case the analysis isstill pertinent as it

provides useful information about the current pool of available machines.

On the assumption that the job requirements expression may be modified, we

shall examine how to form useful suggestions to the user in this regard. Our goal

in this end is to find the least drastic modification to the expression that results in a

16

successful match. In order to achieve this algorithmicallywe need a precise metric

for the degree to which an expression is modified. We shall usethe metric described

in the beginning of this section.

Additionally we need to define exactly what constitutes a modification to a pred-

icate. For our purposes we will allow either a modification tothe value part of a

predicate, or the complete removal of the predicate. If the predicate has an equality

operator the value may be changed to anything as long as it hasthe same type as

the original value. In the case of an inequality the value should only be modified so

as to relax the predicate, as a stricter predicate will get usnowhere. If the operator

in question is a not-equals operator, the only sensible modification is to remove the

predicate altogether. Removal is also the best strategy if the attribute is not defined

in any machine ClassAd.

As an example consider the following clause of a requirements expression:

(other.Arch == "ALPHA") &&

(other.OpSys == "SOLARIS") &&

(other.Memory >= 512M) &&

(other.Disk >= 14M)

In this example there are only four machine attributes we care about:Arch, OpSys,

Memory, andDisk. From this clause we construct a table whose columns corre-

spond to attributes referenced in the predicates of the clause and whose rows corre-

spond to the machine ClassAds. Continuing with our example,here is such a table:

17

Machine

ClassAd Arch OpSys Memory Disk

1 “ALPHA” “LINUX” 256M 10G

2 “INTEL” “LINUX” 256M 20G

3 “SPARC” “SOLARIS” 1024M 10G

4 “INTEL” “LINUX” 512M 10G

5 “ALPHA” “LINUX” 512M 10G

6 “SPARC” “SOLARIS” 1024M 20G

7 “INTEL” “LINUX” 256M 20G

8 “SPARC” “SOLARIS” 256M 10G

Computing the distances for each attribute we get:

Machine Total

ClassAd Arch OpSys Memory Disk Distance

1 0 1 0.333 0 1.333

2 1 1 0.333 0 2.333

3 1 0 0 0 1

4 1 1 0 0 2

5 0 1 0 0 1

6 1 0 0 0 1

7 1 1 0.333 0 2.333

8 1 0 0.333 0 1.333

The rows in boldface are the machines with the shortest composite distance to our

clause. We can now suggest that the user should either change(other.Arch ==

"ALPHA") to (other.Arch == "SPARC") or change(other.OpSys ==

"SOLARIS") to (other.OpSys == "LINUX"). We give preference to the

former as it will net the most machines, and thus give the usera better chance of

getting a successful match in the future.

18

3.1.1 Detecting Conflicts

Another way of looking at theI Don’t Like Anyonesituation is to find predicates

that conflict with one another, that is, predicates that may be satisfied by machines

on their own, but are not satisfied in conjunction. In our example we have many

machines running Solaris and several machines with Alpha processors, but no Alpha

machines running Solaris. In this case the expression

(other.OpSys == "SOLARIS") &&

(other.Arch == "ALPHA")

represents two conflicting predicates, each of which evaluate to true in the context

of some machine ClassAds, but in conjunction will always evaluate tofalse. Alter-

nately, an expression may contain a conflict that will evaluate to false regardless of

the context it is evaluated in. An example of such a conflict isthe expression

(other.Arch == "ALPHA") &&

(other.Arch == "INTEL")

In this case we have two predicates that may be satisfied on their own, but together

they will never be satisfies as theArch attribute can only have one value. In other

words, the first example happens to be false for a given set of machines while the

second example is logically inconsistent and therefore unsatisfiable.

Detecting the former kind of conflict requires the evaluation of the individual ex-

pressions in the context of machine ClassAds, whereas the latter kind may be iden-

tified in isolation. To detect the latter we must separate thepredicates in a clause by

19

attribute reference. For each attribute referenced we convert the predicates to points

or intervals depending on the type of the values. If the intersection of these intervals

is empty (as is the case in our second example) we have identified a conflict. The

remainder of this section is devoted to conflicts that are dependent on the values of

the machine attributes.

To better understand the problem of conflict detection it is helpful to think of a

clause as set of predicates and to construct a subset lattice, with the full clause on the

top and an empty clause (semantically equivalent totrue) on the bottom. In Figure 3

we see a lattice representation of the sub-expressions of the clause from our first

example where:

p1 is (other.Arch == "ALPHA")

p2 is (other.OpSys == "SOLARIS")

p3 is (other.Memory >= 512M)

p4 is (other.Disk >= 14M)

Each subset corresponds to sub expression of the clause generated by removing cer-

tain predicates.

A given subsetsucceeds(marked with aT) if the corresponding expression eval-

uates totrue in the context of some machine ClassAd andfails (marked with anF)

otherwise. Any set in the lattice that fails and has no failing subsets is a Minimal

Failing Sub-expression (MFS), enclosed by a dashed oval. Any set that succeeds and

has no succeeding superset is a Maximal Succeeding Sub-expression (MSS), marked

by a solid oval. This terminology comes from work in databasequery analysis [26].

20

The conflicts we are looking for are those that correspond to MFSs, that is expres-

sions that always evaluate tofalse, but whose sub-expressions evaluate to true in

some context.

{p1, p3, p4} {p2, p3, p4}{p1, p2, p4}{p1, p2, p3}

{p1} {p2}T T

F
T

T
F

FF

T

{}

F

T

{p1, p2, p3, p4}

{p1, p2}
{p1, p3}

{p2, p3}
{p1, p4}

{p2, p4}
{p3, p4}

{p4}{p3}T T

T

T T

Figure 3: A subset lattice representing sub-expressions ofa clause. The solid ovals
are MSSs and the dashed ovals are MFSs.

Godfrey [26] shows that in the general case finding all MFSs isNP-Hard, but pro-

poses a linear time algorithm for finding one MFS and a polynomial time algorithm

for finding a fixed numberk of MFSs. However, these algorithms are measured in

terms of the number of database queries needed to produce thedesired information.

If we have a table of evaluations (generated inm × n time wherem is the length of

a clause andn is the number of contexts) of each of the predicates in the context of

each of the machines we do not need to make a series of queries as we have all of the

information we need.

The table of evaluations for our example is the following:

21

Machine (p1) Arch == (p2) OpSys == (p3) Memory (p4) Disk

ClassAd “ALPHA” “SOLARIS” >= 512M >= 14M

1 T F F T

2 F F F T

3 F T T T

4 F F T T

5 T F T T

6 F T T T

7 F F F T

8 F T F T

The columns of this table correspond to the predicates in theclause and the rows

correspond to machine ClassAds as in the previous table.

To generate the set of all MFSs we must first generate the set ofall MSSs. To get

the set of all MSSs we simply collect all of the unique rows of the Boolean table and

prune out any rows that do not correspond to MSSs. Using the set of MSSs we derive

a formula in DNF that is equivalent to the set of all succeeding sub-expressions. We

then negate this formula to get a formula equivalent to all failing sub-expressions.

If we convert the negated formulas to DNF and prune out any logically redundant

sub-formulas we have a formula that contains all of the MFSs (and nothing but the

MFSs) as clauses.

Based on the entries in the Boolean table the set of succeeding sub-expressions

may be represented by the formula:

(¬p2 ∧ ¬p3)∨ (¬p1 ∧ ¬p2 ∧ ¬p3)∨ (¬p1)∨ (¬p1 ∧ ¬p2)∨ (¬p2)∨ (¬p1)∨

(¬p1 ∧ ¬p2 ∧ ¬p3)∨ (¬p1 ∧ ¬p3)

pruning out redundancies we get:

22

(¬p1) ∨ (¬p2)

Its negation is:

(p1 ∧ p2)

This result is already in DNF, and corresponds exactly to theMFS we seek.

The main drawback to this process is that converting the negated formula from

CNF to DNF may result in an exponential blow up in the size of the formula. This is

not a grave concern, as in practice these requirements expressions are not very long,

at least with respect to the number of machine ClassAds.

3.2 Nobody Likes Me

The converse of theI Don’t Like Anyonesituation isNobody Likes Me. Instead of

the job ClassAd requirements expression rejecting all machines, all of the machine

ClassAd’s requirements expressions reject the job. Therefore we must examine mul-

tiple expressions in DNF in the context of a single job ClassAd. Our focus is pro-

viding information for the user who submits the job, so we must look at this in terms

of the attributes of the job ClassAd. Just as we sought to suggest modifications to

the job requirements expression in the previous section, weshall endeavor to find

potential modifications to the job ClassAd’s attributes. Itis even possible that crucial

attributes may be missing from the job ClassAd entirely.

In the semantics of the ClassAd language a reference to a nonexistent attribute

evaluates toundefined. For the purpose of matchmaking,undefinedis equivalent to

23

false. Since we wish to distinguish between attributes that are not defined in a job

ClassAd and attributes with values that cause machine requirements expressions to

evaluate to false, this distinction is crucial.

The algorithm forI Don’t Like Anyonein effect finds the closest point to the

hyper-rectangle and generates suggestions to expand the hyper-rectangle to include it.

Now, given a single point, we wish to find the closest of several hyper-rectangles. We

shall use this to suggest changes to the job attributes so that the point may be relocated

within the closest hyper-rectangle, and thus the job ClassAd will be accepted by some

machine ClassAd’s requirements expression.

Figure 4 shows the geometric equivalent of two clauses whereclause 1 is

(ImageSize >= 128M) &&

(MemoryRequirements >= 512M)

and clause 2 is

(ImageSize >= 64M) &&

(MemoryRequirements >= 1024M)

We can find the closest hyper-rectangles by applying the distance algorithm dis-

cussed in the beginning of the section. This method is sufficient for finding the near-

est point, or smallest overall change to the attributes in the job ClassAd. However,

one might wish for more detailed information, such as how many machines would

match with the job if the changes described above are made. Inorder to be concise

we should partition the space covered by the hyper-rectangles representing machine

24

requirements expressions into equivalence classes. Each partition corresponds to a

range of job attribute values that satisfy the requirementsof a unique set of machines.

��

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

������
������
������
������
������

������
������
������
������
������

��

M
em

or
yR

eq
ui

re
m

en
ts

ImageSize

51
2M

10
24

M

64M 128M

Clause 1 Clause 2

Figure 4: A geometric representation of two clauses

The first step in this process is generating the hyper-rectangles. If a machine

requirements expression contains more than one clause, we create a separate hyper-

rectangle for each clause, as the union of all such hyper-rectangles represents the

space covered by the entire expression. Given a clause, we may treat each predicate

as an interval (or set of intervals) in the dimension corresponding to its attribute.

An equals operator in the predicate defines a point, a not-equals operator defines

the union of two open intervals comprising all values exceptfor the value in the

predicate, and any other inequality operator defines an openor closed interval from

the value to positive or negative infinity. If there are multiple predicates with the

25

same attribute, we find the intersection of all of the intervals they represent. If this

intersection is empty, we have found a logical conflict as described in the previous

section. Since we are dealing with machine ClassAds, we simply throw out this

clause as it will never be satisfied.

The second step is partitioning along each dimension separately, taking care to

keep track of which partition any given clause of a machine requirements expression

belongs to. For example, clause 1 (c1) in Figure 4 contains the predicate

other.Memory >= 512M

and clause 2 (c2) contains the predicate

other.Memory >= 1024M.

These clauses creates two intervals:[512, 1024) and [1024,+∞) corresponding to

the sets{c1} and{c1, c2}. We continue this process until all clauses in each machine

requirements expression are processed, then repeat the process for all dimensions.

If there is an attribute that is referenced in some clauses but not others we simply

represent that clause as(−∞,+∞), the set of all strings, or the set of all Boolean

values depending on the inferred type of the attribute (determined by the first value

associated with that attribute).

One tricky aspect is dealing with a predicate like

other.Owner != "ncoleman".

If the type of the value were Boolean the solution would be trivial, and we have

already defined how a not-equals operator is to behave among numerical values.

26

In this case we invent a special string value calledAnyOtherString. If a clause of

a machine requirements expression contains such a predicate, that clause is added

to every partition in theOwner dimension except the one corresponding to the

string "ncoleman", as well a partition corresponding to AnyOtherString (if the

AnyOtherString partition does not exist we create one). We shall see that it is impor-

tant to keep track of which strings are not represented by AnyOtherString in a given

dimension.

The third step is constructing then dimensional partitions by taking the cross

product of the vectors of intervals in each dimension. Giveninterval [64, 128) in

theImageSize dimension with clause setS1 = {c2} and interval[1024,+∞) in

theMemoryRequirements dimension with clause setS2 = {c1, c2} we create a

rectangle defined by[64, 128)× [1024,+∞), and associate it with the intersection of

S1 andS2, namely{c2}. What this means is that job ClassAds with attribute values

in the range defined by[64, 128)×[1024,+∞) will match the machine corresponding

to c2. We continue the process with all intervals, and with all dimensions.

If we run into the AnyOtherString placeholder in a dimensionwith string values,

we make note of all of the other string values we have encountered in that dimension

and annotate any hyper-rectangle created using this instance of AnyOtherString with

these values. For example, if the dimension corresponds to the Owner attribute

and the other string values are"ncoleman" and"raman", then AnyOtherString

means any value forOwner except"ncoleman" and"raman".

Finally we have a set of hyper-rectangles each associated with a subset of clauses

27

(and therefore a subset of machines) that partitions the space. We may need to clean

up this set by adjoining hyper-rectangles corresponding toidentical sets of machines.

We can now not only find the closest range of values to those in our job ClassAd,

we can specify how many and which machines will match with a job ClassAd with

attribute values in that range. In addition we can present several alternative value

ranges, each with a distance defined at the beginning of the section and a set of

matching machines. This extra information opens the door for more complex policies

for determining suggestions based on distance as well as user preferences for certain

machines.

28

Chapter 4

ClassAd Representation of

SPKI/SDSI Certificates

The ClassAd representation of SPKI/SDSI certificates is fairly simple. Each cer-

tificate ClassAd consists zero or morecert request portsand acert offer port. A

cert offer port contains attributes corresponding to the type (name or auth), issuer,

identifier (name certs only), and subject of the cert. TheSubject attribute is a

literal value if the subject of the cert is directly specifiedusing a public key, or an

attribute reference if the subject is indirectly specified using a SPKI/SDSI name with

one or more identifiers. In the indirect case the ClassAd alsocontains one or more

cert request ports, each of which requests a name cert (or chain of certs) to resolve

the SPKI/SDSI name. If the ClassAd represents an auth cert with the delegation bit

turned on, there is an additional cert request port requesting an additional auth cert

(or chain of certs) issued by the subject of the cert.

29

4.1 Transforming SPKI/SDSI Certificates to ClassAds

Given a name certC =K A→ S whereK is the key of the issuer,A is the identifier

being defined inK ’s name space, andS is the subject of the definition andS = K0

A0 A1 ... An−1 we define the ClassAd Ad(C) as shown in Figure 5. Note: ifS =

K0 then there is only one port. Returning to our example certs inFigure 2, Figure 6

shows the ClassAd for cert (2).

4.2 Compatibility and Composition

Given two certsC1 andC2, we claim thatC1 is compatible withC2 if and only

if the offer port of Ad(C2) matches the first request port of Ad(C1). Note that the

Requirements expression of the first request port of Ad(C1) is:

other.Type == "cert_offer" &&

other.CertType == "Name" &&

other.Issuer == "K_2" &&

other.Identifier == "A_2"

matching the offer port of Ad(C2).

Given two chainsCh1 andCh2 the Ad function can be extended as follows:

Ad(Ch1 ◦ Ch2) is defined by filling the first open request port in the gang defined

by Ad(Ch1) with the gang defined by Ad(Ch2) assuming that the two chains are

compatible.

30

4.3 Name Resolution

Consider a name certC = K A→ S. We wish to assemble a chain of name certs to

resolve subjectS (rewrite it as a key). The corresponding concept in gangmatching

is marshaling a gang using Ad(C) as a root and evaluating the Subject attribute in the

offer port of Ad(C) to determine the key thatS resolves to.

Lemma Given a chain of name certsCh, the subject ofCh is equal to the value of

theSubject attribute of the offer port of Ad(Ch).

Proof: The proof is inductive.

Base Case:S = K0, soS resolves to itself.

Ad(C) = Ad(K A→ K0) is shown in Figure 7 TheSubject attribute of the offer

port of Ad(C) evaluates to “K0”.

Induction: First we shall show that the existence of a chain implies the existence

of a gang. Then we shall show the reverse. In both cases we assumeS hasn ≥ 1

identifiers so:

S = K0 A0 A1 ... An−1

31

Chain → Gang: If there is a resolution for S then the following cert chains must

exist:

Ch0 = K0 A0→ K1 (the composition of all of the certs inCh0)

Ch1 = K1 A1→K2,

...,

Chn−1 = Kn−1 An−1→ Kn

so thatChn = C ◦ Ch0 ◦ ... ◦ Chn−1 = K A→Kn for some not necessarily distinct

keysK1, ...,Kn

Assume a gang can be marshaled for cert chains of length< |Chn| and for 0< i

< n - 1 the offer port of Ad(Chi) is as follows:

[

other = request;

Type = "cert_offer";

CertType = "Name";

Issuer = "K_(i)";

Identifier = "A_(i)";

Subject = "K_(i+1)";

Requirements =

other.Type == "cert_request"

]

32

The first request port of Ad(C), labeledchain1 can be filled by the offer port of

Ad(Ch0) since the request portRequirements expression is:

other.Type == "cert_offer" &&

other.CertType == "Name" &&

other.Issuer == "K_0" &&

other.Identifier == "A_0"

and the offer port of Ad(Ch0) is:

[

other = request;

Type = "cert_offer";

CertType = "Name";

Issuer = "K_0";

Identifier = "A_0";

Subject = "K_1";

Requirements =

other.Type == "cert_request"

]

The second request port of Ad(C), labeledchain2 can be filled by the offer port

of Ad(Ch1) since the request portRequirements expression is:

other.Type == "cert_offer" &&

other.CertType == "Name" &&

other.Issuer = chain1.Subject &&

other.Identifier == "A_1"

33

andchain1.Subject is bound to theSubject attribute of the offer port of

Ad(Ch0) with the value"K 1". In the same way the request port labeledchain(i)

can be filled by Ad(Chi). It follows that theSubject attribute of the offer port of

Ad(Chn) is equal to theSubject attribute of the offer port of Ad(Chn−1) which

evaluates to"K n".

Gang→ Chain: If a gangG (which can be thought of as a structured set of Class-

Ads) can be marshaled to satisfy Ad(C), then a sub-gang satisfying each request port

of Ad(C) must exist. We shall refer to these sub-gangs asG1, ...,Gn−1.

Assume that a corresponding certificate chain exists for anysub-gang of size less

than|G| and for0 < i < n− 1 ∃ Chi such that the offer port ofGi = Ad(Chi) is:

[

other = request;

Type = "cert_offer";

CertType = "Name";

Issuer = "K_(i)";

Identifier = "A_(i)";

Subject = "K_(i+1)";

Requirements =

other.Type == "cert_request"

]

34

Chi = Ki Ai→Ki+1

for some identifierAi, and keysKi andKi+1.

Since the offer port ofG0 satisfies the first request port of Ad(C) C is compatible

with Ch0. Similarly since the offer port ofGi satisfies the first open request port of

Ad(C ◦ Ch0 ◦ ... ◦ Chi−1) the chainC ◦ Ch0 ◦ ... ◦ Chi−1) is compatible withChi.

By induction we can build a chain:

Chn = C ◦ Ch0 ◦ ... ◦ Chn−1 = K A→ Kn

Note that once again theSubject attribute of the offer port of Ad(Chn) equals the

Subject attribute of the offer port of Ad(Chn−1) which evaluates toKn. �

4.4 Authorization and Delegation

Given an auth certC =K �→ S D whereK is the key of the issuer,S is the subject

of the authorization, andD is the delegation bit (D = � if on and� if off) and S =

K0 A0 A1 ... An−1 we define Ad(C) to be the ClassAd in Figure 8.

35

If D is off, the last two ports are replaced by the following single port:

[

other = request;

Type = "cert_offer";

CertType = "Auth";

Issuer = "K";

Subject = chain(n).Subject;

Requirements =

other.Type == "cert_request"

]

Note: if S = K0 andD is off then there is only one port with itsSubject attribute

equal toK0. Returning again to the rules in Figure 2, Figure 9 shows the ClassAd for

cert(1) and Figure 10 shows the ClassAd for cert (3).

CertsC1 = K1 �→ S1 D1, C2 = K2 A2 → S2 are compatible ifS1 = K2 A2 X

for some sequence of zero or more identifiers X. As Ad(C1) is identical to Ad(C1)

in Section 4.2 in all aspects relevant to the proof in that section we can conclude the

equivalence of compatibility with matching the first open request port (not including

the final request port ifD is on).

36

CertsC1 = K1 � → S1 D1, C2 = K2 � → S2 D2 are compatible ifS1 = K2

andD1 is on. To show that this is equivalent to the offer port of Ad(C2) matching

the first open request port of Ad(C1) we note theRequirements expression of the

first request port of Ad(C1) is:

other.Type == "cert_offer" &&

other.CertType == "Auth" &&

other.Issuer == "K_2"

matching the offer port of Ad(C2). The extended definition of composition follows

from the above.

We can now consider the equivalence of certificate chains with auth certs. A

certificate chain that contains auth certs must begin with anauth cert, as name certs

can only be composed with other name certs. LetC = K �→ S D be an auth cert.

Our root ClassAd will be Ad(C). If D is off, all of the request ports of Ad(C) are

identical to that of a name cert with the same subject. Therefore the equivalence of a

cert chain beginning with auth certC and a gang with Ad(C) as its root was proved

in Section 4.3. IfD is on, we may also assume equivalence up to the filling of the

final port.

With all but the last request port filled we have an incompletegangG and a chain

Ch such that:

Ad(Ch) = G

S resolves toKn

Ch = K �→Kn �

37

If we wish to viewCh as a complete gang we need only fill the final request port of

G with the seed ClassAd shown in Figure 11. This seed ClassAd matches the final

clause in theRequirements expression of the final request port ofC. Note that

theSubject attribute of the offer port of Ad(C) is equal to theSubject attribute

of the offer port of Ad(Chn−1).Subject which evaluates toKn.

If we wish to use the delegation option we can composeChwith another auth cert

C ′ =K ′
�→ S ′ D′ as long asK ′ =Kn. This is equivalent to filling the final request

port with Ad(C ′) as shown above. In this case theSubject attribute of the offer

port of Ad(C) is chain(n).Subject which is equal to theSubject attribute of

the offer port of Ad(C ′)

Ch ◦ C ′ = K �→ S ′
� (or � if D′ is off) At this point we may use the same proof

recursively as filling the request ports of Ad(C ′) is equivalent to building a chain

fromCh ◦ C ′.

4.5 Certificate Chain Gangmatching

In Section 4.4 we demonstrated how to use an auth cert as the root of a gang. If

we wish to used gangmatching to find a certificate chain satisfying a given autho-

rization, the root of the gang we wish to assemble must be an authorization request.

Specifically, the request is for the head of a certificate chain which must be an auth

cert issued by the principal granting the authorization. Given such a principalI,

Figure 12 shows the request ClassAdAdRoot.

Certificate chain discovery can now be described as a gangmatching problem.

38

We are given an authorization request represented by ClassAd AdRoot, and a set of

certificatesC = C1, ...,Cn. Let C = {Ad1 = Ad(C1), ... ,Adn = Ad(Cn), AdK0
, ...

, AdKm
} whereAdKi

is the seed ClassAd described in Section 4.4 for a given key

Ki. The request is satisfied if a gang can be marshaled that satisfies the constraints of

the request. A certificate chain authorizing the request canbe extrapolated from the

gang.

Now that we have defined a ClassAd representation for SPKI/SDSI certificates

and shown that a valid gang of such ClassAds is equivalent to avalid certificate

chain, we must describe a suitable algorithm for assemblinggangs. As stated before,

a depth first search algorithm as described in [51] is insufficient because re-use of

ClassAds introduces the possibility an infinite number of gangs. There is also the

possibility that the algorithm may enter an infinite loop andnot produce any gangs

at all. As an example, consider the SPKI/SDSI certificateK A → K A A. Since

this certificate is compatible with itself, it can be appliedto itself repeatedly without

K A ever being resolved. The ClassAd equivalent of this certificate matches itself,

so a depth first search gangmatching algorithm would get stuck in a loop repeatedly

adding the same certificate to a gang.

The solution based on push down systems (PDS) described in [29] deals with

these problems by generating a finite representation of a setof found certificate chains

and ignoring new chains that are equivalent to chains in the set. We can adapt this

approach to gangmatching by generalizing the notion of equivalence to gangs.

39

[

Ports = {

[

other = chain1;

Type = "cert_request";

Requirements = other.Type == "cert_offer" &&

other.CertType == "Name" && other.Issuer == "K_0" &&

other.Identifier == "A_0"

],

[

other = chain2;

Type = "cert_request";

Requirements = other.Type == "cert_offer" &&

other.CertType == "Name" && other.Issuer == chain1.Subject

&& other.Identifier == "A_1"

],

...

[

other = chain(n);

Type = "cert_request";

Requirements = other.Type == "cert_offer" &&

other.CertType == "Name" &&

other.Issuer == chain(n-1).Subject &&

other.Identifier == "A_(n-1)"

],

[

other = request;

Type = "cert_offer";

CertType = "Name";

Issuer = "K";

Identifier = "A";

Subject = chain(n).Subject;

Requirements = other.Type == "cert_request";

]

}

]

Figure 5: ClassAd for generic name cert

40

[
Ports = {
[

other = request;
Type = "cert_offer";
CertType = "Name";
Issuer = "K_A";
Identifier = "Bob";
Subject = "K_B";
Requirements =

other.Type == "cert_request"
]

}
]

Figure 6: ClassAd for certificate (2)

[
Ports = {
[

other = request;
Type = "cert_offer";
CertType = "Name";
Issuer = "K";
Identifier = "A";
Subject = "K_0";
Requirements =

other.Type == "cert_request"
]

}
]

Figure 7: ClassAd equivalent to Ad(K A→K0)

41

[

Ports = {

[

other = chain1;

Type = "cert_request";

Requirements = other.Type == "cert_offer" &&

other.CertType == "Name" && other.Issuer == "K_0" &&

other.Identifier == "A_0"

],

[

other = chain2;

Type = "cert_request";

Requirements = other.Type == "cert_offer" &&

other.CertType == "Name" && other.Issuer == chain1.Subject

&& other.Identifier == "A_1"

],

...

[

other = chain(n+1);

Type = "cert_request";

Requirements = other.Type == "cert_offer" &&

other.CertType == "Auth" && other.Issuer == chain(n).Subject

],

[

other = request;

Type = "cert_offer";

CertType = "Auth";

Issuer = "K";

Subject = chain(n+1).Subject;

Requirements = other.Type == "cert_request"

]

}

]

Figure 8: ClassAd for generic auth cert

42

[
Ports = {
[

other = chain1;
Type = "cert_request";
Requirements =

other.Type == "cert_offer" &&
other.CertType == "Name" &&
other.Issuer == "K_A" &&
other.Identifier == "Bob";

],
[

other = chain2;
Type = "cert_request";
Requirements =

other.Type == "cert_offer" &&
other.CertType == "Auth" &&
other.Issuer == chain1.Subject

],
[

other = request;
Type = "cert_offer";
CertType = "Auth";
Issuer = "X";
Subject = chain2.Subject;
Requirements =

other.Type == "cert_request"
]

}
]

Figure 9: The ClassAd for cert(1)

43

[
Ports = {
[

other = chain1;
Type = "cert_request";
Requirements =

other.Type == "cert_offer" &&
other.CertType == "Name" &&
other.Issuer == "K_B" &&
other.Identifier == "Carol";

],
[

other = request;
Type = "cert_offer";
CertType = "Auth";
Issuer = "K_B";
Subject = chain1.Subject;
Requirements =

other.Type == "cert_request"
]

}
]

Figure 10: The ClassAd for cert (3)

[

Ports = {

[

other = request;

Type = "cert_offer";

CertType = "Auth";

Issuer = "K_(n)";

Subject = "K_(n)";

Requirements =

other.Type == "cert_request";

]

}

]

Figure 11: A generic seed ClassAd

44

[
Ports = {
[

other = chain;
Requirements =

chain.CertType == "Auth" &&
chain.Issuer == "I";

]
}

]

Figure 12: The request ClassAdAdRoot

45

Chapter 5

Gangmatching: Structures, Concepts

and Algorithms

The gangmatching algorithm requires more formal definitions of the concepts and

structures involved. In this chapter we will formally definethe static and dynamic

structures. Next, we formally define the concepts of equivalence, partial evaluation,

and validity. We then present the algorithm, along with proofs of correctness and

a complexity analysis. Finally we describe problems that arise from gangmatching,

and propose solutions using ClassAd analysis techniques.

The primary structures involved in gangmatching areClassAds, ports, gangsand

gangsters. A gangmatching ClassAd is made up of a set of ports, each of which

represents a request for another ClassAd. A port that has notbeen matched is called

an openport. A gang is a set of ClassAds that match one another’s ports. If all

ports are satisfied, the gang iscomplete. A gangster is an intermediate structure

that represents an open port in an incomplete gang along witha set ofbindingsthat

assign values to attribute references and express dependencies between other ports

and the gangster’s port. Ports, gangs, and gangsters will bedefined more formally in

Section 5.1

46

The key concepts used by the algorithm areequivalence, partial evaluationand

validity. Two gangsters are equivalent if they are structurally the same, but contain

attributes from different ClassAds. Partial evaluation isused for expressions in in-

complete gangs, where not all of the attribute references are bound to literal values.

These partially evaluated expressions must be satisfied by bindings generated by sub-

sequent matches in order for the resulting complete gang to be valid. We will define

equivalence, partial evaluation, and validity more precisely in Section 5.2.

The gangmatching algorithm is based on the structures and concepts outlined

above. The input to the algorithm is a root ClassAdC0 with one port, and a set

of ClassAdsC. Beginning with the gangster composed of the single port ofC0,

the algorithm creates new gangsters by matching existing gangsters to parent ports of

other ClassAds. Whenever a new gangster is created, a new rule in a regular grammar

is generated. When the algorithm terminates, this grammar generates all complete

valid gangs built fromC0 and the ClassAds inC. In order to avoid repeated work and,

more importantly, infinite loops, the algorithm tests if newgangsters are equivalent to

previously encountered gangsters. If an equivalent gangster is found, the algorithm

adds a new rule to the grammar, but does not attempt to match the new gangster.

Otherwise, the new gangster is tested against the parent port of each ClassAd inC0

for a potential match. If the match is conditionally valid, the constraint formulas are

partially evaluated, and the resulting expression is passed to the first new gangster

created by the match. Further matches must satisfy this expression in addition to the

appropriate constraint formulas. The algorithm is presented and explained in more

47

detail in Section 5.3.

5.1 Gangmatching Structures

The input for the gangmatching algorithm consists of a set ofClassAds.

Each ClassAd consists of an ordered list of ports. Aport consists of a set ofat-

tribute definitionsand aconstraint formula. The attributes defined in a port are also

exported by the port to potential matches, and are referred to asexported attributes.

The attributes referred to in the definitions and constraintformula of a portP may be

imported viaP or via a port precedingP in the same ClassAd. These attributes are

referred to asimported attributes. For example in Figure 13, there are two ports: one

to request a workstation to run a simulation on, and one to request a license to use

the software needed to run the simulation. The attribute definitions in the first port

define the exported attributesType andImageSize. The constraint formula in the

first port is the attribute expression of theRequirements attribute and contains

constraints on the imported attributesType, Arch, OpSys andMemory. We know

that these are imported attributes because they are in the form other.attr. Note

also the reference to the exported attributeImageSize in the constraint formula.

The second port is similar to the first, with a notable exception that it contains a ref-

erence to an attribute (Name) imported from the first port. We know that this attribute

is imported from the first port because it is in the formcpu.attr wherecpu is the

label assigned to the port of the ClassAd that matches the first port, as indicated by

the definitionother = cpu. ClassAds and ports make up the static structures used

48

in the gangmatching process and are defined formally in Section 5.1.1.

[
Ports = {

[// request a workstation
other = cpu;
Type = "cpu_request";
ImageSize = 28M;
Requirements =
other.Type == "Machine" &&
other.Arch == "INTEL" &&
other.OpSys == "LINUX" &&
other.Memory >= ImageSize

],
[// request a license

other = license;
Type = "license_request";
CPUName = cpu.Name;
Cmd = "run_sim";
Requirements =
other.Type == "License" &&
other.App == Cmd

]
}

]

Figure 13: A gangmatching ClassAd for a job

The output for the gangmatching algorithm consists of a set of gangs. A gang

represents a tree of ClassAds where each ClassAd is connected to its parent or child

through one of its ports. The ClassAd at the root of the tree isreferred to as the

root ClassAd, ClassAds with more than one port that are not the root ClassAd are

intermediate ClassAds, and ClassAds with only one port that are not the root areleaf

ClassAds. A port connecting a ClassAdC to one of its children is called achild

port, and the port connectingC to its parent is theparent port. Given two ClassAds

C andC ′ whereC is the parent ofC ′, the connection between the child port ofC

49

corresponding toC ′ and the parent port ofC ′ is called amatch. A gang iscomplete

if it contains a root ClassAd with no parent port and every ClassAd in the gang has a

child for each of its child ports. If any ClassAd in a gang has an unmatched port the

gang isincomplete.

The process for creating gangs involves building incomplete gangs from Class-

Ads and building complete gangs from incomplete gangs. In order to prevent the

construction of infinitely large gangs, we need a way to indicate when an incomplete

gang is equivalent to a previously encountered incomplete gang. An incomplete gang

can be thought of as a set of unmatched oropenports. An open port in an incomplete

gang also has a corresponding set of assignments orbindingsof attributes imported

via matched ports in the gang to literal values. Conversely,each open port has a set

of imported attributes that other open ports contain references to. The set of bindings

between attributes from other ports and attributes in an open port, as distinguished

from the bindings of attributes to literal values, are referred to aslinks. We refer to

an open port together with a set of bindings and a set of links as agangster. Gangs

and gangsters make up the dynamic structures used in the gangmatching process and

are defined formally in Section 5.1.2.

5.1.1 Static Structures

Before we formally define what a port is, we must first define theatoms from which

a port is constructed. Attributes describe an advertisement and are exported by a port

or imported via a port. An attribute definition consists of a name and an expression.

50

For the purpose of this chapter we restrict attribute expressions to attribute references

imported via other ports or literal values. LetV denote the set of all literal values,E

the set of all exported attributes,I the set of all imported attributes, and letU = I ∪

E ∪ V. A set of attribute definitions is represented by a total function δ : E → (I ∪

V). We shall refer to this function as adefinition function.

We now define a predicate logic for expressing constraints onattributes. LetB =

{T, F, U, E} be a set of literal values in four valued ClassAd Boolean logic. The

Boolean operators∧, ∨, and¬ are well defined over values inB. An n-ary predicate

is a functionκ : Un → B. We defineΦ as the set of all Boolean formulas over

predicates inK and values inB. Formally we defineΦ as follows:

• if b ∈ B thenb ∈ Φ

• if κ is ann-ary predicate and~u ∈ Un then (κ, ~u) ∈ Φ

• if φ, ψ ∈ Φ thenφ ∧ ψ, φ ∨ ψ, ¬φ ∈ Φ

Henceforth, we shall refer to elements ofΦ as constraint formulas.

We can now formally define a portP as a 5-tuple (EP , IP , JP , δP , φP) where

EP ⊆ E is the set of all attributes exported byP , IP ⊆ I is the set of all attributes

imported viaP , JP ⊆I is the set of all attributes referenced inP that are imported via

other ports,δP : EP → (JP ∪ V) is a function representing the attribute definitions

in P , φP ∈ Φ is a constraint formula overIP , JP , andV representing the match

requirements ofP . A ClassAdCi = {P i
0, . . ., P i

n−1} is an ordered list of ports.

The cardinality ofCi is expressed as|Ci| and is equal ton, the number of ports

51

in Ci. An attribute namedImpAttr imported by portP i
j is abbreviatedImpAttri

j ,

and an attribute namedExpAttr exported by portP i
j is abbreviatedExpAttri

j(e).

The superscript and subscript are omitted when the name of the attribute and its

designation as imported or exported are unambiguous.

LetC0 be the ClassAd in figure 13.C0 consists of two ports,P 0
0 andP 0

1 .

EP 0

0
= {Type, ImageSize}

IP 0

0
= {Type,Arch,OpSys,Memory,Name}

JP 0

0
= ∅

δP 0

0
= {Type 7→ "cpu request", ImageSize 7→ 28M}

φP 0

0
= (Type == "Machine") ∧ (Arch == "INTEL") ∧

(OpSys == "LINUX") ∧ (Memory >= ImageSize)

EP 0

1
= {Type, CPUName, Cmd}

IP 0

1
= {Type,App}

JP 0

1
= {Name}

δP 0

1
= {Type 7→ "license request",CPUName 7→ Name,

Cmd 7→ "run sim")}

φP 0

1
= (Type == "License") ∧ (App == Cmd)

5.1.2 Dynamic Structures

Given a setI ⊆ I of imported attributes we define abinding functionas a partial

functionβ : I →V. A binding function is analogous in form to a definition function,

52

but in the process of gangmatching, definitions are static while bindings are dynam-

ically created. A set of links is represented by abinding relationL ⊆ I × I that

associates one set of imported attributes with another.

A gangsterG is an intermediate structure in the gangmatching process that repre-

sents an open port in an incomplete gang. We defineG as a triple (P , β, L) whereP

=(E, I, J , δ, φ) is a port,β : J →V is a binding function andL⊆ I × I is a binding

relation.β binds the attributes imported via prior ports and referenced in P to literal

values.L associates imported attributes from elsewhere in a gang with attributes im-

ported viaP on which they depend. The setD = J \ {i | (i, v) ∈ β for somev ∈

V} represents the dependencies ofG. G is independent ifD is empty, otherwiseG

is dependent.

Returning to the example ClassAd in Figure 13, letG0 be the gangster forP 0
0 ,

andG1 be the gangster forP 0
1 .

G0 = (P 0
0 , ∅, ∅), P 0

0 = (E0
0 , I0

0 , ∅, δ0
0, φ0

0)

G1 = (P 0
1 ,∅, ∅), P 0

1 = (E0
1 , I0

1 , {Name00}, δ
0
1, φ0

1)

Note thatG0 is independent sinceJ0
0 is empty, butG1 is dependent sinceJ0

1 is

nonempty, soD = J0
1 \ ∅ = {Name00}. If we find a match forG0 that defines

the attributeName, we can create a new gangsterG2 fromG1:

G2 =(P 0
1 , {Name00 7→ "paneer.cs.wisc.edu"})

Now that we have a binding forName00 in βG2
,G2 is independent.

53

[
Ports = {
[

other = cpu1;
Type = "cpu_request";
Requirements =

other.Type == "Machine" &&
other.IsDedicated;

],
[

other = cpu2;
Type = "cpu_request";
Requirements =

other.Type == "Machine" &&
other.IsDedicated &&
other.Host == cpu1.Host

],
[

other = request;
Type = "Machine";
Arch = cpu1.Arch;
OpSys = cpu1.Opsys;
Memory = cpu1.Memory;
Name = cpu1.Name;
Requirements = other.Type == "cpu_request"

]
}

]

Figure 14: A gangmatching ClassAd for a multi-processor

LetC1 be the ClassAd in Figure 14. Suppose that we have matched the first port

of C0 (P 0
0) with the third port ofC1 (P 1

2). This means that the imported attribute

cpu.Name (Name00) in C0 is bound to the exported attributeName12(e) in C1, that

in turn is bound to the imported attributecpu1.Name (Name10). When we create

the gangsterG3 for the first open port of the gang created whenC0 is matched with

C1 it must contain this binding in its binding relation:

54

G3 = (P 1
0 , ∅, {(Name00,Name10)})

This way, whenG3 is matched andName10 is bound to a literal value,Name00 can

also be bound to that value.

A matchM is a pair (G, P) whereG = (PG, βG, LG) is an independent gangster

andP = (EP , IP , JP , δP , φP) is a port. A match defines two binding functionsβG→P

: IPG
→ EP andβP→G : IP → EPG

that bind the imported attributes inPG to the

attributes of the same name exported byP and the imported attributes inP to the

attributes of the same name exported byPG respectively.

A gangΓ = (C0, · · · , Cn−1) is an ordered list of ClassAds. This list represents

a tree of ClassAds where the parent port of each non-root ClassAd is matched with

the first open child port of the gang constructed from the preceding ClassAds. We

define the size ofΓ as the number of ClassAds (n). Γ is complete iff
∑n−1

i=0 |Ci| =

2(n− 1), i.e. the total number of ports in the gang is twice the total number of non-

root ClassAds.Γ0 = (C0,C1) is not complete since it contains five ports and only one

match.

5.2 Gangmatching Concepts

The principal concepts needed for the gangmatching algorithm and gangmatching

analysis are analogous to similar concepts used in the lambda calculus. Every gang-

ster has asignaturethat can be derived by applying the bindings to the occurrences

of imported attributes in the port’s attribute definitions and constraint formula. Two

55

gangsters areequivalentif they have identical signatures. The function used to trans-

late one gangster to an equivalent gangster is analogous to alpha reduction of lambda

expressions. We defined a match in Section 5.1.2 as a pairing of a gangsterG in

an incomplete gang with the parent portP of a ClassAdC. A match isvalid if G

satisfiesP ’s constraint formula andP satisfies the constraint formula ofG’s port. A

gang is valid if all of its matches are valid. It may be the casethat the constraint

formulas contain imported attribute references that are still unbound. We call such a

matchconditionally valid. This scenario can be dealt with by partially evaluating the

constraint formulas, and using the bindings created by subsequent matches to satisfy

the resulting formula. This use of partial evaluation corresponds to beta reduction of

lambda expressions.

5.2.1 Equivalence

A signatureS is a 6-tuple (E, I, J , δ, L, φ) whereE ⊆ E is a set of exported

attributes,I andJ ⊆ I are sets of imported attributes,δ : E → J ∪ V is a definition

function,φ is a constraint formula over elements ofI, J andV, andL ⊆ I × I is

a binding relation. LetG be the set of all possible gangsters andS be the set of all

possible signatures. We define a functionΣ : G → S as follows. Given a gangsterG

= (PG, βG, LG) ∈ G, Σ(G) = (EPG
, IPG

, δ, LG, φ) whereδ = δPG
◦ βG andφ = φPG

◦

δPG
◦ βG.

56

Returning to our example:

Σ(G0) = EP 0

0
, IP 0

0
,

{(Type, "cpu request"), (ImageSize, 28M)},

∅,

(Type, == "Machine") ∧ (Arch (== "INTEL") ∧

(OpSys (== "LINUX") ∧ (Memory (== 28M))

Σ(G1) = EP 0

1
, IP 0

1
,

{(Type, "license request"), (CPUName, Name),

(Cmd, "run sim")},

∅,

(Type == "Machine") ∧ (App == "run sim")

Σ(G2) = (EP 0

1
, IP 0

1
,

{(Type, "license request"), (CPUName, "paneer.cs.wisc.edu"),

(Cmd, "run sim")},

∅,

(Type == "Machine") ∧ (App == "run sim"))

Σ(G3) = (EP 1

0
, IP 1

0
,

{(Type, "cpu request")},

{(Name00,Name)},

Type == "Machine") ∧ IsDedicated)

57

Two gangstersG andG′ are equivalent (G ≡ G′) iff S = Σ(G), S ′ = Σ(G′) and

there exists a bijectionα : ES ∪ IS ∪ JS → ES′ ∪ IS′ ∪ JS′ such that:

• for eachattr ∈ ES α(attr) = attr′ ∈ ES′ for someP ′

• for eachattr ∈ IS α(attr) = attr′ ∈ IS′ for someP ′

• for eachattr ∈ JS α(attr) = attr′ ∈ JS′ for someP ′

• δS ◦ α = δS′ andδS′ ◦ α−1 = δS′

• φS ◦ α = φS′ andφS′ ◦ α−1 = φS

• LS ◦ α = LS′ andLS′ ◦ α−1 = LS

5.2.2 Partial Evaluation and Validity

We define the partial evaluation functionB : Φ→ Φ as follows:

• if b ∈ B, thenB(b) = b.

• if κ is ann-ary predicate,~u∈ Un thenB(κ, ~u) = (κ, ~u) if κ(~u) = U (the ClassAd

boolean valueundefined), otherwiseB(κ, ~u) = κ(~u).

• if φ ∈ Φ andB(φ) ∈ B thenB(¬, φ) = ¬ B(φ), otherwiseB(¬, φ) = (¬, φ).

• if op ∈ {∨, ∧} andφ, ψ ∈ Φ thenB(φ op ψ) = the value ofB(φ) op B(ψ) if

bothB(φ) andB(ψ) are inB or one of them is inB and applyingop results

in the same value regardless of the value of the other. OtherwiseB(φ op ψ) =

B(φ) op B(ψ).

58

Given matchM = (G, P), letψM =

B((φPG
◦ δPG

◦ βG ◦ βG→P ◦ δP) ∧ (φP ◦ δP ◦ βP→G ◦ δPG
◦ βG)).

If ψM = T, thenM is valid. If ψM ∈ {F, U,E} thenM is invalid. If ψM 6∈B thenM

is conditionally valid, i.e. a binding functionβ must be supplied such thatB(ψM ◦ β)

= T in order forM to be a valid match. We can constructβ from binding functions

created by other matches. Assuming we have a satisfactoryβ, the binding function

created byM is βM = βG→P ◦ δP ◦ β.

For example, letM1 be the match (G0, P 1
2):

ψM1
= B((φP 0

0
◦ δP 0

0
◦ βG0

◦ βG0→P 1

2
◦ δP 1

2
) ∧ (φP 1

2
◦ βP 1

2
→G0
◦ δP 0

0
◦ βG0

))

= B(((Type00 == "Machine") ∧

(Arch0
0 == "INTEL") ∧ (OpSys0

0 == "LINUX") ∧

(Memory0
0 == ImageSize

0
0)

◦ δP 0

0
◦ βG0

◦ βG0→P 1

2
◦ δP 1

2
) ∧

((Type12 == "cpu request") ◦ βP→G ◦ δPG
◦ βG))

= B(((Type00 == "Machine") ∧

(Arch0
0 == "INTEL") ∧ (OpSys0

0 == "LINUX") ∧

(Memory0
0 == 28M)

◦ βG0
◦ βG0→P 1

2
◦ δP 1

2
) ∧

((Type00(e) == "cpu request") ◦ δPG
◦ βG))

59

= B(((Type00 == "Machine") ∧

(Arch0
0 == "INTEL") ∧ (OpSys0

0 == "LINUX") ∧

(Memory0
0 == 28M)

◦ βG0→P 1

2
◦ δP 1

2
) ∧

(("cpu request" == "cpu request") ◦ βG))

= B(((Type12(e) == "Machine") ∧ (Arch1
2(e) == "INTEL") ∧

(OpSys1
2(e) == "LINUX") ∧ (Memory1

2(e) == 28M)

◦ δP 1

2
) ∧

("cpu request" == "cpu request"))

= B(("Machine" == "Machine") ∧

(Arch1
0 == "INTEL") ∧ (OpSys1

0 == "LINUX") ∧

(Memory1
0 == 28M) ∧ ("cpu request" == "cpu request"))

= (Arch1
0 == "INTEL") ∧ (OpSys1

0 == "LINUX") ∧

(Memory1
0 == 28M)

Note thatψM1
is a constraint formula over attributes imported viaP 1

0 , soM1 is

conditionally valid.

A gangΓ = (C0, . . ., Cn−1) is valid iff the order ofCi’s defines a breadth first

ordering of a tree of ClassAds where each childCj of Ci corresponds a portP in Ci

60

(P is called a child port ofCi) and there is one portP ′ in eachCj corresponding to

P (P ′ is called the parent port ofCj) and for eachM = (G, P) used to construct the

gang:

• P is the parent port ofCi

• PG is a child port of the parent ClassAd ofCi

• M is valid orM is conditionally valid and forβ = ∪ {βM ′ | Cj is a child ofCi}

B(ψM ◦ β) = T, whereM ′ is the match between a child port ofCi with Cj.

5.3 Gangmatching Algorithm

The gangmatching algorithm builds individual gangs in a top-down (root to leaves)

fashion. The premise of the algorithm is that if an infinite number of gangs can be

composed from a finite set of ClassAds, then there must be a repeating pattern –

in the same way that a finite automaton can define an infinite butregular language.

These repetitions can be prevented by detecting new gangsters that are equivalent

to previously encountered gangsters. Thus, we can assemblea finite grammar that

may produce an infinite number of gangs. In addition, this algorithm makes use of

the partial evaluation facility described in Section 5.2.2to build gangs that satisfy

conditionally valid matches.

The algorithm takes as input a setC of ClassAds, and a root ClassAdC0. Without

loss of generality we will assumeC0 has only one port. We also assume that each

ClassAdC ∈ C ∪ {C0} satisfies the following properties:

61

• The requirements expressionφP of each portP of C consists of a conjunction

of binary or unary predicates over attributes imported viaP (IP), attributes im-

ported via previous ports inC (JP) and literal values (V) in which no predicate

contains attributes imported from more than one previous port in C and every

predicate contains at least one attribute imported viaP .

• The last port inC is the parent port ofC, and all other ports are child ports.

• C has no more than 2 child ports.

The primary data structures in the algorithm are:

• SEEN - a set of previously encountered gangsters indexed by signature

• ALT - a set of equivalence classes of gangsters indexed by signature

• RULES - a set of rules for a regular grammar that generates all possible gangs

• NEXT - a mapping from gangsters to gangsters to assure that the grammar

generates each gang in the correct order

In order to facilitate the handling of conditionally valid matches we will add an ad-

ditional componentψG to each gangG. The purpose ofψG will become clear as we

discuss the algorithm.

The GANGMATCH method shown in Figure 15 adds a gangster created from the

single port ofC0. The algorithm then enters a loop in which gangsters are removed

and added to a list of gangs using the ADDGANGSTER and REMOVEGANGSTER

methods. At the beginning of each loop, an independent gangster is added toSEEN

62

GANGMATCH(C0 , C)
1 P ← C0’s port
2 G← ADDGANGSTER(P ,∅,∅,T)
3 RULES ← {(G→ C0)}
4 while G← REMOVEGANGSTER()
5 if SEEN [Σ(G)]
6 ALT [Σ(G)] ← ALT [Σ(G)] ∪ {G}
7 for each (G′→ G′′ C ′) ∈ RULES whereG′′ ≡ G
8 RULES ← RULES ∪ (G′→ G C ′)
9 elseSEEN [Σ(G)] ← true

10 for eachC ∈ C
11 ψ← MATCH(G, C)
12 if ψ 6∈ {F,U,E}
13 GENERATENEWGANGSTERS(G, C, ψ)

MATCH(G, C)
1 P ← C ’s parent port
2 δG← δPG

◦ βG

3 φG← (φPG
◦ βG) ∧ ψG

4 ψ← B((φG ◦ βG→P ◦ δP) ∧ (φP ◦ βP→G ◦ δG))
5 return ψ

Figure 15: The GANGMATCH algorithm

if there is no equivalent gangster already inSEEN or added to the appropriate equiv-

alence class inALT otherwise. IfG is not equivalent to a gangster inSEEN , the

parent portP of each ClassAdC ∈ C is tested to see if it matchesG. The MATCH

method takesG andP as input and returns an element ofB for valid or invalid

matches or a constraint formulaψ for conditionally valid matches. If the matchM

= (G, P) is valid or conditionally valid the method GENERATENEWGANGSTERS is

called. When the GANGMATCH method has completed,RULES will produce a set

of matches representing all complete valid gangs rooted atC0. Each gang is a list of

ClassAds in order of appearance in the gang, with the parent port of each ClassAd

63

matching the first open port of the gang made up of the previousClassAds.

GENERATENEWGANGSTERS(G, C, ψ)
1 P ← C ’s parent port;LM ← ∅;
2 for eachattr(e) 7→ Y ∈ δP
3 if (X, attr) ∈ LG

4 LM ← LM ∪ {(X, Y)}
5 LM ← LM ∪ {(attr, Y)}
6 Glast← null
7 for each child portP ′ of C
8 L← {(X, Y) ∈ LM | Y ∈ IP ′}
9 ψ′← ∧ {predicates inψ containing ani ∈ IP ′}

10 Gnew ← ADDGANGSTER(P ′ , ∅, L, ψ′)
11 if Glast = null
12 RULES ← RULES ∪ {(Gnew → G C)}
13 elseNEXT [Glast] ← Gnew

14 Glast← Gnew

15 G′← NEXT [G]
16 if G′ 6= null
17 β ← {(X, Y) ∈ LM | X ∈ JP

G′
, Y ∈ V}

18 Gnew ← ADDGANGSTER(PG′ , β, LG′ , ψG′)
19 if Glast = null
20 RULES ← RULES ∪ {(Gnew → G C)}
21 elseNEXT [Glast] ← Gnew

22 NEXT [Gnew] ← NEXT [G′]
23 elsifGlast 6= null
24 NEXT [Glast] ← null
25 elseRULES ← RULES ∪ {(S → G C)}

Figure 16: The GENERATENEWGANGSTERSmethod

The GENERATENEWGANGSTERSmethod shown in Figure 16 creates new gang-

sters from the child ports of a ClassAdC whose parent portP has just been matched

with gangsterG. It keeps track of the correct order of gangsters using theNEXT

mapping. It then creates a new gangster fromNEXT [G], and the bindings created

by matchingG with P . If this method produces no new gangsters, then a gang has

64

been completed and (S → G C) is added toRULES.

The first part of the GENERATENEWGANGSTERSmethod uses the binding rela-

tionLG, the binding functionβG→P , and the definition functionδP to construct new

bindings. Recall thatLG ⊆ I × IPG
binds attributes imported via other ports in an

incomplete gang to the attributes imported viaPG, βG→P : IPG
→ EP binds each

attribute imported viaPG to an attribute of the same name exported byP , andδP :

EP → (V ∪ JP) defines each attribute exported byP as a literal value or an attribute

imported from port precedingP in the same ClassAd (C). If we composeβG→P with

δP we get a new binding functionβM : IPG
→ (V ∪ JP). Furthermore we can apply

βM to the bindings inLG to get an additional set of bindingsLM ⊆ I × (V ∪ JP).

The setβM ∪ LM contains all of the bindings that ensue from matchingG with P .

Let β = (βM ∪ LM) ∩ (I × V), andL = (βM ∪ LM) ∩ (I × JP).

The second part of the GENERATENEWGANGSTERSmethod creates new gang-

sters from ports inC and bindings inLM . Given a portP ′ ∈ C, the bindings relation

L = LM ∩ (I × JP ′) can be used to create a new gangsterGnew = (P ′, ∅, L, ψ′).

The third part of the GENERATENEWGANGSTERSmethod creates a new gang-

ster by applying bindings inβ to NEXT [G]. Given a gangsterG′ = NEXT [G],

the bindings inβ ∩ (JP ′ × V) can be used to create a binding function for the new

gangsterGnew = (PG′ , βG ∪ β, LG′ , ψG′).

To demonstrate this algorithm we return to the ClassAd representation of

SPKI/SDSI certificates discussed in Chapter 4. Given the following certificates ex-

pressed as rewrite rules:

65

(1)X �→KA Bob�

(2)KA Bob→KB

(3)KB �→KB Carol�

(4)KB Carol→ KC

the ClassAd representations of these certificates (C1, · · ·,C4) are shown in Figures 17

and 18. The ClassAd (C0) representing a request for authorization for principalKC

to access resourceX is shown in Figure 19. The following table shows an example

run of the gangmatching algorithm.

Match Gangsters Rules

G0 = (P 0
0 , ∅, ∅, T) G0→ C0

(G0, C1) G1 = (P 1
0 , ∅, ∅, T) G1→ G0 C1

G2 = (P 1
1 , ∅, {(Subject00, Subject

1
1)},

(Subject11 == "K C"))

(G1, C2) G3 = (P 1
1 , {(Subject10, "K B")}, G3→ G1 C2

{(Subject00, Subject
1
1)},

(Subject11 == "K C"))

(G3, C3) G4 = (P 3
0 , ∅, {(Subject00, Subject

3
0)}, G4→ G3 C3

(Subject30 == "K C"))

(G4, C4) S → G4 C4

The gang generated by the grammar is (C0, C1, C2, C3, C4).

66

5.3.1 Correctness

Termination: As defined in Section 5.1.1 an attribute expression in a port can either

be an attribute reference or a literal value. Therefore, thepossible attribute values in

a port are limited to the literal values inV. Therefore there are finitely many vari-

ations of a given port of a given ClassAd. Since there are finitely many ClassAds,

there are finitely many gangsters that can be added toSEEN . If a gangster has

an equivalent gangster inSEEN it is skipped and no new gangsters are generated

during that iteration of the while loop. Since the only gangsters that are considered

are gangsters that have no equivalent inSEEN and there are only finitely many pos-

sible gangs that can be added toSEEN , the while loop must eventually terminate.�

Soundness:Every gang output by the algorithm is a collection of valid (or condi-

tionally valid) matches between a valid gangster and a parent port of a constituent

ClassAd. In the case of a conditionally valid match between agangsterG and a

ClassAdC with parent portP , parts of the resulting formulaψ are attached to gang-

sters, based on which imported attributes occur inψ. Line 9 of the GENERATENEW-

GANGSTERS method in Figure 16 shows that predicates inψ are parceled out to a

portP ′ if they contain an attribute inIP ′. In order for the algorithm to be correct, the

only imported attributes occurring inψ must be elements ofJP ⊆ ∪ {IP ′ | P ′ is a

child port ofC}, the attributes referenced inP imported from prior ports inC. We

shall prove this inductively.

The formulaψ is generated from three sources:φPG
, φP , andψG. We can assume

67

that ψG either contains no imported attributes (the base case) or that ψG contains

only elements ofIPG
(which serves as the inductive hypothesis). Applying the match

functionβG→P toψG takes all elements ofIPG
to the corresponding elements ofEP .

The definition function ofP , δP , takes all elements ofEP to elements ofJP or literal

values inV.

The constraint formulaφPG
is defined overEPG

, IPG
, andJPG

. Applying δPG
,

the definition function ofPG, takes all elements ofEPG
to elements ofIPG

or literal

values inV. Further applyingβG, the binding function ofG, takes all elements of

JPG
to literal values inV. Applying the match functionβG→P takes all elements of

IPG
to the corresponding elements inEP . Finally, applying the definition functionδP

takes all elements ofEP to elements ofJP or literal values inV.

The constraint formulaφP is defined overEP , IP , andJP . Applying δP takes

elements ofEP to elements ofJP or literal values inV. The match functionβP→G

takes all elements ofIP to the corresponding elements inEPG
. The definition func-

tion δPG
takes these elements ofEPG

to elements ofJPG
or literal values inV. Finally

the binding functionβG takes all elements ofJPG
to literal values inV.

Once the correct parts ofψ are attached to gangsters, any match between those

gangsters and other ClassAds must also satisfyψ, or pass along new formulas to new

gangsters. The passing of formulas can not last indefinitely, since the last ClassAd

added to complete a can must not have any child ports and thus must not have any

dependencies (i.e.JP = ∅). Since all matches in a complete gang are either valid

or conditionally valid with their conditions satisfied, andonly complete gangs are

68

output, all gangs output are valid.�

Completeness:To prove completeness we must first show thatNEXT always con-

tains the correct values.

Lemma For any gangsterG, NEXT [G] is equal to the gangster representing the

next open port, ornull if there is no next open port.

Proof: The proof is inductive.

Base Case:Let G0 be the first gang created in line 2 of the GANGMATCH method

in Figure 15. AsG0 represents the only port in the gang consisting of ClassAdC0,

NEXT [G0] is null .

Induction: We assume that at the beginning of the GENERATENEWGANGSTERS

method in Figure 16NEXT has the correct values for all existing gangsters. If the

ClassAdC has no child ports, then at line 15Glast is null . This means that lines 21

and 23 will not be executed, and no changes will be made toNEXT . If C has one

child port, thenGlast will be set to the gangster created from the child port in line

14. We shall refer to this gangster asG1. If C has two child ports, then during the

second iteration of thefor loop beginning at line 7NEXT [G1] will be set to the

gangster created from the second child port, designatedG2, in line 13. Line 14 then

69

setsGlast to G2. In either caseGlast is set to the last new gangster created. In line

15G′ is set toNEXT [G], by assumption the gangster representing the next open

port in the gang after the one represented byG. If G′ is null thenNEXT [Glast] is

correctly set to null in line 24. OtherwiseNEXT [Glast] is correctly set to the new

gangster created fromG′, designatedG3, in line 21. In line 22NEXT [G3] is then

set toNEXT [G′] insuring that the next open port after the port representedby G′

remains the next open port whenG3 is created.�

A complete gangΓ is a sequence of ClassAdsC0, · · ·,Cn where the parent port of

each ClassAdCi (wherei 6= 0) matches with the first open port of the gang comprised

of the ClassAds prior toCi. We need to prove that for each valid gangΓ there is a

sequence of rules inRULES that generates the corresponding sequence of ClassAds.

LetGi be the gangster representing the first open port of the gang constructed from

C0, · · ·, Ci (wherei < n). We need to show thatG0 → C0, Gi+1 → Gi Ci+1 for

each 0< i < n, andS → Gn−1 Cn are all present inRULES The first part is

clear from line 3 of the GANGMATCH method in Figure 15. In line 8 for any rule

containing a gangster equivalent toG in the right hand side a new rule is added with

G substituted for the equivalent gangster. The remaining rules are generated in the

GENERATENEWGANGSTERSmethod in Figure 16.

Assume GENERATENEWGANGSTERS is called onGi andCi+1. If Ci+1 has one

or more child ports, then the first child port is represented by a new gangsterGnew in

line 10. In line 12 a the ruleGnew → Gi Ci+1 is added toRULES. Gnew represents

70

the first open port in the gang constructed fromC0, · · ·, Ci+1, soGnew = Gi+1. If

Ci+1 has no child ports thenGlast is null at line 15. By the above Lemma,G′ is set

to the next open port after the port represented byGi (NEXT [Gi]) in line 15. If G′

is notnull then a new gangsterGnew is created fromG′ in line 18 and the ruleGnew

→ Gi Ci+1 is added toRULES in line 20. SinceGnew represents the first open port

in the gang constructed fromC0, · · ·, Ci+1, Gnew = Gi+1. If G′ is null then we have

generated a complete gang. This is reflected in line 25 where the ruleS → Gi Ci+1

is added to rules. The only way this is possible is ifi = n− 1. �

5.3.2 Complexity

The complexity of the algorithm may be described in terms of the following vari-

ables:

• c is the number of ClassAds inC.

• v is the maximum number of possible unique values for a given attribute.

• j is the maximum number of attributes imported from prior ports (dependen-

cies) in all ports of all ClassAds inC

The number of possible unique gangsters is equal to the number of ports, which

is O(c), times the number of combinations of values for each port’s dependencies,

which isO(vj). If there areO(cvj) possible unique gangsters, then lines 11-13 of

the GANGMATCH method in Figure 15 are executedO(c2vj) times. The MATCH

method in Figure 15 and the GENERATENEWGANGSTERSmethod in Figure 16 are

71

each constant time if we assume that the number of attributesdefined in each port

is a constant. This means that there areO(c2vj) total gangsters generated, so lines

5 and 6 of GANGMATCH are executedO(c2vj) times. For each unique gangster

G, only one rule withG on the left hand side is added toRULES, so line 8 is

also executedO(c2vj) times. Therefore the time complexity of the gangmatching

algorithm isO(c2vj). The space complexity is alsoO(c2vj) sinceSEEN , ALT ,

RULES, andNEXT are all bounded by the total number of gangsters.

The complexity of the certificate chain discovery algorithms in [12, 29] is ex-

pressed in terms of|C|, the sum of the lengths of the right hand sides of all rules

corresponding to certs inC, andnK , the number of unique public keys occurring in

C. In the ClassAd representation of SPKI/SDSI certificates described in Chapter 4c

isO(|C|), v isO(nk), andj = 1. Given these ClassAds, the algorithm has a time and

space complexity ofO(nK|C|
2), the same worst case time complexity as thepost*

algorithm for certificate chain discovery presented in [29].

72

[// certificate (1)
Ports = {
[

other = chain1;
Type = "cert_request";
Requirements = other.Type == "cert_offer" &&

other.CertType == "Name" &&
other.Issuer == "K_A" &&
other.Identifier == "Bob";

],
[

other = chain2;
Type = "cert_request";
Requirements = other.Type == "cert_offer" &&

other.CertType == "Auth" &&
other.Issuer == chain1.Subject

],
[

other = request;
Type = "cert_offer";
CertType = "Auth";
Issuer = "X";
Subject = chain2.Subject;
Requirements = other.Type == "cert_request"

]
}

]

[// certificate (2)
Ports = {
[

other = request;
Type = "cert_offer";
CertType = "Name";
Issuer = "K_A";
Identifier = "Bob";
Subject = "K_B";
Requirements = other.Type == "cert_request"

]
}

]

Figure 17: Gangmatching ClassAds for the SPKI/SDSI certificates (1) and (2)

73

[// certificate (3)
Ports = {
[

other = chain1;
Type = "cert_request";
Requirements = other.Type == "cert_offer" &&

other.CertType == "Name" &&
other.Issuer == "K_B" &&
other.Identifier == "Carol"

],
[

other = request;
Type = "cert_offer";
CertType = "Auth";
Issuer = "K_B";
Subject = chain1.Subject;
Requirements = other.Type == "cert_request"

]
}

]

[// certificate (4)
Ports = {
[

other = request;
Type = "cert_offer";
CertType = "Name";
Issuer = "K_B";
Identifier = "Carol";
Subject = "K_C";
Requirements = other.Type == "cert_request"

]
}

]

Figure 18: Gangmatching ClassAds for SPKI/SDSI certificates (3) and (4)

74

[
Ports = {
[

other = chain;
Type = "cert_request";
Requirements = chain.Type == "cert_offer" &&

chain.CertType == "Auth" &&
chain.Issuer == "X" &&
chain.Subject == "K_C"

]
}

]

Figure 19: Gangmatching ClassAd for a SPKI/SDSI authorization request for access
to resourceX by principalKC

75

Chapter 6

Gangmatching Analysis

Gangmatching analysis is essentially an extension of bilateral matching analysis. Be-

tween any two given ports, the same techniques can be used to determine why the

first port does not match the second and vice versa. However, the presence of prior

ports in a ClassAd introduces the possibility that one matchmay be dependent on

the results of other matches. In addition, new problems arise from the more complex

structure of a gang as opposed to two matching ClassAds.

A common problem in authorization systems is how to revoke a principal’s access

to a resource. For example, in SPKI/SDSI a principal may haveaccess to a resource

via several different certificate chains containing certificates issued by several dif-

ferent principals. In order to revoke the principal’s access to the resource, at least

one certificate in each such chain must be revoked. To avoid unnecessary disruption

caused by certificate revocation, the set of certificates revoked should be minimal.

For example, given the following set of SPKI/SDSI certificates:

76

(1)X �→ KA Bob�

(2)X �→ KC Bob�

(3)KA Bob→ KD Bob

(4)KC Bob→ KD Bob

(5)KD Bob→ KB

(6)KA Bob→ KB

the request to authorize principalKB (Bob) to authorize resourceX can be satisfied

by three different chains corresponding to three differentsubsets of certificates:

(1)(3)(5)

(1)(6)

(2)(4)(5)

An example of a minimal cut would be the removal of certs (1) and (4). Note that

removing (1) or (5) affects two chains. One can not remove a certificate from one

chain without removing it from another.

The Break the Chainproblem may be abstracted to the problem of finding a

minimal element in a subset lattice that passes a given test.In this case the top set in

the lattice is the set of all certificates inC. The test on a givenC ′ ⊆ C is whether the

certificates inC ′ grant the principal access to the resource. The problem of finding all

such minimal elements has been shown to be NP-hard [26], but the problem of finding

one such element is linear. Furthermore, findingk such elements for a constantk is

polynomial: fork > 1 the complexity isO(nk−1). In Section 6.1 we will apply this

abstraction, then improve the performance by optimizing toreduce repeated work.

77

TheMissing Linkproblem is the opposite of the Break the Chain problem. In this

case a principal has no access to a resource, but may have elements of a certificate

chain that would grant access. The problem is to find which certificates are needed

to complete a chain that will authorize the principal to access the resource.

For example, given the following set of SPKI/SDSI certificates:

(1)X �→ KA Admin �

(2)KB Carol→ KC

the request to authorize principalKC (Carol) to authorize resourceX can not be

satisfied by any subset of certificates. An example of a certificate whose addition

would satisfy the request for authorization isKA Admin→KB Carol.

The gangmatching equivalent of this problem is finding whichClassAds are

needed to complete a gang. The solution to this problem is to run the gangmatching

algorithm with a slight modification: When a port does not match any other ports,

the gang is not abandoned; instead, the algorithm continuesto match the rest of the

ports in the gang and any dependencies on the unmatched port are ignored. When a

partial gang has been completed, the “missing links” in the gang can be determined

by using the requirements expressions of the unmatched ports, and the references

to imported attributes in these ports. Satisfied requirements expressions elsewhere

in the gang that contain such references can be partially evaluated to produce addi-

tional constraints for missing links. In Section 6.2 we willmodify the gangmatching

algorithm to accept prototype ClassAds that will capture these additional constraints.

78

6.1 Break the Chain

In order to revoke a principal’s access to a resource, at least one certificate in every

chain granting access must be revoked. To avoid unnecessarydisruption caused by

certificate revocation, the set of certificates revoked should be minimal. This problem

may be abstracted to the problem of finding a minimal element in a subset lattice that

passes a given test.

The revocation orBreak the Chainproblem can be stated as follows: given a

resourceR, a principalP , and a set of SPKI/SDSI certificatesC find a minimal set

of certsCM such thatC - CM does not grantP access toR. The minimal element

of a lattice (MEL) problem is as follows: given setS and testT ⊆ 2S whereT is

monotonic with respect to subset, find a minimal element of the subset lattice ofS

that passes testT (i.e. no subset ofM is in T).

We now show that theBreak the Chainproblem can be reduced to the MEL

problem. LetS = C andT = {C ′ ⊆ C | C - C ′ fails to authorizeP to accessR}. We

must now prove the monotonicity ofT . LetC ′ ∈ T . If C ′ = C it has no supersets in

2C . If C ′ ⊂ C, letC ′′ =C ′ ∪ c wherec ∈ C - C ′. C - C ′′ =C - (C ′ ∪ c) = (C - C ′) - c.

SinceC - C ′ fails to authorizeP to accessR, (C - C ′) - c must also fail to authorize

P to accessR. SoC ′′ ∈ T . SoT is monotonic with respect to subset.

A MEL M of (S,T) has the following properties:

• C - M will not authorizeP to accessR (M ∈ T)

• if M ′ ⊂M , C = M ′ will authorizeP to accessR (M is minimal)

79

These are precisely the criteria of the “Break the Chain” problem.�

To find one MEL requiresO(|C|) calls to test membership inT . The gangmatch-

ing algorithm in Section 5.3 can be used to perform the test. However, repeated calls

to the gangmatching algorithm result in a great deal of repeated work. A closer look

at the algorithm to find a MEL reveals a way to avoid this extra computation. The

MEL algorithm starts with the setS, repeatedly removes elements and tests the re-

sult. If the result passes the test, the algorithm continuesremoving elements. If the

result fails the test, the element removed is added to the MELset, and is included in

each successive test.

In the Break the Chainproblem,T is testing to see if the certificates not in the

current set fail to authorizeP to accessR. Since we are dealing with the set com-

plement, each successive step either adds a new certificate to the complement, or

removes the last certificate added (adding it to the MEL set) and adds a new cer-

tificate. Using this information, and the grammar produced by the gangmatching

algorithm, we can devise an algorithm that performs these two set operations without

any re-computation.

The algorithm in Figure 20 takes as input a set of ClassAdsC that may be re-

moved during the course of the algorithm, a second set of ClassAdsCbase that may

not be removed, and a set of rules generated by the gangmatching algorithm from

the ClassAds inC andCbase. In the case of the ClassAd representation of SPKI/SDSI

certificates,Cbase consists of the root ClassAdC0 and the seed ClassAds described

in Section 4.4, whileC consists of the ClassAds representing actual certificates.Two

80

sets of ClassAds,Ccurr andCprev are maintained throughout the algorithm to repre-

sent the current set of ClassAds being tested and the most recent set of ClassAds that

passed the test. The reason for keeping track of two sets is toeasily rollback to the

previous state if adding a ClassAd causes the test to fail. Similarly, the setsGcurr

andGprev represent the set of gangsters that can be generated by ClassAds in Ccurr

andCprev. We initializeCprev asCbase andGprev asG0, the gangster created fromC0.

In the while loop, ClassAds fromC are added along with the ClassAds inCprev to

Ccurr, then the ADDC method is called to determine the consequences of addingC.

If A DDC returns false, then addingC results in the test failing, in which case all new

additions are ignored andCprev andGprev remain the same. Otherwise, the test has

passed andCprev andGprev are replaced byCcurr andGcurr.

The ADDC method matches upC with each gangsterG in Gcurr to see if there

are any rules inRULES that are of the form (G′ → G C). If there are, thenG′

must be added toGcurr since it can be generated by ClassAdC and gangsterG. This

also results in the recursive method ADDG that, like ADDC, checks if any rules have

a right hand side containingG′ and some ClassAd inC. If at any point in ADDC

or ADDG a rule is found withS as the left hand side, then the set of ClassAds in

Ccurr generates a complete gang corresponding to a certificate chain authorizingP

to accessR. There are two consequences to encountering such a rule: we must roll

back our sets of ClassAds and gangsters to ones inCprev andGprev, and we must add

C to CUT . At the end of the algorithm, the setCUT will contain a minimal set

of (certificate) ClassAds whose removal will prevent the authorization we wish to

81

revoke.

Returning to theBreak the Chainexample at the beginning of the chapter, the

grammar generated by the gangmatching algorithm, given this request and these cer-

tificates, is as follows (SKB
refers to the seed ClassAd for principalKB):

S → G11 SKB
| G10 SKB

| G7 SKB

G11→ G8 C5

G10→ G5 C5

G8→ G3 C4

G7→ G1 C6

G5→ G1 C3

G3→ G0 C2

G1→ G0 C1

G0→ C0

Passing this grammar to theBreak the Chainalgorithm, one of the possible runs (that

vary depending on the permutation of ClassAds picked) is shown in Figure 21. The

value ofCUT at the end of the run is{C1, C4}, corresponding to certificates (1) and

(4).

6.2 Missing Link

The solution to the missing link problem takes advantage of the partial evaluation

facility of the gangmatching algorithm. In order to find a missing link, one must first

provide prototypes of acceptable ClassAds. These prototypes are then added to the

82

setC, and the gangmatching algorithm, with a few minor modifications, is run. If

the algorithm generates any valid complete gangs, it will also generate constraints on

any prototype ClassAds in each gang. These constraints, along with the prototypes,

can be used to specify candidate missing link ClassAds.

A prototype ClassAd is structured the same way as a normal ClassAd, except

with dummy variables substituting for literal values. These dummy variables must

be treated as literal values by the methods of the gangmatching algorithm, with the

exception of the MATCH partial evaluation method where they are treated as if they

were attribute references. Thus, when a potential match is tested between an indepen-

dent gangsterG and a portP of a dummy ClassAd, the MATCH method will return a

formula over the dummy variables inP and the attributes imported from ports prior

toP (JP).

LetD be a set of dummy variables. LetG = (PG, βG, LG, ∅) be an independent

gangster. LetP = (EP , IP , JP , δP , φP) be a parent port of a prototype ClassAd

D. ψ = MATCH(G, D) is a formula overJP ∪ V ∪ D. Figure 22 shows a revised

version of the GENERATENEWGANGSTERS method from Figure 16. GENERATE-

NEWGANGSTERS(G, D, ψ) creates a binding relationLM ⊆ I × (V ∪ D ∪ JP). In

line 8 of Figure 22 a binding relationL is created fromLM ∩ (I × IP ′) for each child

portP ′ of D. Since we wish to treat dummy variables as literal values, noelements

of LM containing elements ofD are included in these binding relations. Similarly

ψ′ contains no occurrences of elements ofD. Therefore all occurrences of dummy

variables in eachGnew created are restricted to those in the respective child portP ′

83

of D. Note that for eachGnew created, a rule (Gnew → G D) is added toRULES.

All of the changes we need to make to the GENERATENEWGANGSTERSmethod are

in lines 15, 17, 18, and 25.

The first change we make to the GENERATENEWGANGSTERSmethod (line 15)

is to create a new constraint formulaψD made up of all of the predicates inψ that

contain occurrences of dummy variables. Again, we wish to treat dummy variables

as literal values here, so in line 17 the binding functionβ must include elements of

LM that contain occurrences of elements ofD. In line 18 we appendψD to ψG′ ,

ensuring that the predicates over dummy variables generated by matchingG with

C are preserved. By passingψD along in this way we assure that when a complete

gang is created theψ from the last match contains all of the predicates over dummy

variables, hence the addition of (ψ) to the rule generated in line 25.

Returning to theMissing Linkexamples at the beginning of the chapter, given

this request and this set of certificates we can use the gangmatching algorithm in Fig-

ure 15 with the modified GENERATENEWGANGSTERSmethod in Figure 22 to find a

missing link to complete the desired certificate chain. We will also need a prototype

ClassAd with dummy variables in place of literal values. LetD = {IssuerV alueD
0 ,

IdentifierV alueD
0 , IssuerV alueD

1 , IdentifierV alueD
1 }. Let D be a prototype

ClassAd with two portsPD
0 andPD

1 where:

δD
0 = {Type 7→ "cert request"}

φD
0 = (Type == "cert offer") ∧ (CertType == "Name") ∧ (Issuer ==

IssuerV alueD
0) ∧ (Identifier == IdentifierV alueD

0)

84

δD
1 = {Type 7→ "cert offer",CertType 7→ "Name", Issuer 7→

IssuerV alueD
1 , Identifier 7→ IdentifierV alueD

1 }

φD
1 = (Type == "cert request")

Figure 23 shows example run of theMissing Linkversion of the gangmatching al-

gorithm. The end result is a complete gang including the dummy ClassAd, anno-

tated with the formulaψ = (IssuerV alueD
1 == "K A") ∧ (IdentifierV alueD

1 ==

"Admin") ∧ ("K B" == IssuerV alueD
0) ∧ ("Carol" == IdentifierV alueD

0).

These constraints on the dummy variables define the certificateKA Admin→ KB

Carol.

85

BREAKTHECHAIN (C, Cbase, RULES)
1 CUT ← ∅

2 Gprev ← {G0}
3 Cprev ← Cbase

4 while C 6= ∅

5 popC from C
6 Gcurr ← Gprev

7 Ccurr ← Cprev ∪ C
8 if ADDC(C, Gcurr, Ccurr, CUT , RULES)
9 Gprev ← Gcurr

10 Cprev ← Ccurr

11 return CUT

ADDC(C, G, C, CUT , RULES)
1 for eachG in G
2 if (S → G C) ∈ RULES
3 CUT ← CUT ∪ C
4 return false
5 else foreachG′ whereG′→ G C

6 if ADDG(G, G, C, RULES) = false
7 CUT ← CUT ∪ C
8 return false
9 return true

ADDG(G, G, C, RULES)
1 for eachC in C
2 if (S → G C) ∈ RULES
3 return false
4 elseG ← G ∪ G
5 for eachG′ whereG′→ G C

6 if ADDG(G, G, C, RULES) = false
7 return false
8 return true

Figure 20: TheBreak the Chainalgorithm

86

Gcurr (Gprev) Ccurr (Cprev) Action CUT

{G0} {SKB
, C0} addC2 ∅

{G0,G3} {SKB
, C0, C2} addC6 ∅

{G0, G3} {SKB
, C0, C2, addC5 ∅

C6}
{G0, G3} {SKB

, C0, C2, addC1 ∅

C6, C5}
{G0, G3,G1, {SKB

, C0, C2, removeC1 {C1}
G5,G7,G10, S} C6, C5, C1} addC4

{G0, G3,G8, {SKB
, C0, C2, removeC4 {C1, C4}

G11, S} C6, C5, C4} addC3

Figure 21: An example run of theBreak the Chainalgorithm

87

GENERATENEWGANGSTERS(G, C, ψ)
1 P ← C ’s parent port;LM ← ∅;
2 for eachattr(e) 7→ Y ∈ δP
3 if (X, attr) ∈ LG

4 LM ← LM ∪ {(X, Y)}
5 LM ← LM ∪ {(attr, Y)}
6 Glast← null
7 for each child portP ′ of C
8 L← {(X, Y) ∈ LM | Y ∈ IP ′}
9 ψ′← ∧ {predicates inψ containing ani ∈ IP ′}

10 Gnew ← ADDGANGSTER(P ′ , ∅, L, ψ′)
11 if Glast = null
12 RULES ← RULES ∪ {(Gnew → G C)}
13 elseNEXT [Glast] ← Gnew

14 Glast← Gnew

15 G′← NEXT [G]; ψD ←∧ {predicates inψ containing an element ofD}
16 if G′ 6= null
17 β ← {(X, Y) ∈ LM |,X ∈ JP

G′
, Y ∈ V ∪ D}

18 Gnew ← ADDGANGSTER(PG′ , β, LG′ , ψG′ ∧ ψD)
19 if Glast = null
20 RULES ← RULES ∪ {(Gnew → G C)}
21 elseNEXT [Glast] ← Gnew

22 NEXT [Gnew] ← NEXT [G′]
23 elsifGlast 6= null
24 NEXT [Glast] ← null
25 elseRULES ← RULES ∪ {(S → G C (ψ))}

Figure 22: The modified version of the GenerateNewGangstersmethod (changes
indicated by underlines)

88

Match Gangsters Rules
G0 = (P 0

0 , ∅, ∅, T) G0→ C0

(G0, C1) G1 = (P 1
0 , ∅, ∅, T) G1→ G0 C1

G2 = (P 1
1 , ∅, {(Subject00, Subject)},

(Subject == "K C")
(G1,D) G3 = (PD

0 , ∅, {(Subject10, Subject)}, G3→ G1 D

(Subject == "K C")
G4 = (P 1

1 , ∅, {(Subject00, Subject)},
(Subject == "K C") ∧
(IssuerV alueD

1 == "K A") ∧
(IdentifierV alueD

1 == "Admin"))
(G3, C2) G5 = (P 1

1 , {Subject10 7→ "K C"}, G5→ G3 C2

{(Subject00, Subject)},
(Subject == "K C") ∧
(IssuerV alueD

1 == "K A") ∧
(IdentifierV alueD

1 == "Admin") ∧
("K B" == IssuerV alueD

0) ∧
("Carol" == IdentifierV alueD

0))
(G5, SKC

) S → G5 SKB
(ψ)

Figure 23: An example run of theMissing Linkalgorithm

89

Chapter 7

Related Work

The research related to the work presented in this dissertation can be divided into five

general categories: matchmaking, resource management, trust management, policy

languages and frameworks, and query analysis. Firstly, a survey of matchmaking re-

search covers gangmatching, alternatives to gangmatching, agent matchmaking, and

unification based matchmaking. Secondly, a review of work onresource manage-

ment includes Condor, Globus, and other resource management frameworks based

on service level agreements (SLAs). Thirdly, SPKI/SDSI research is explored along

with alternate trust management schemes. Fourthly, several policy languages and

frameworks for networks, distributed systems, the semantic web, and grid comput-

ing are investigated. Finally, research on database query analysis is compared to the

policy analysis methods presented in Chapter 3.

7.1 Matchmaking

The fundamental concepts of gangmatching are laid out in [53]. A more thorough

discussion of gangmatching as well as two optimizations of the original gangmatch-

ing algorithm can be found in [51]. Both optimizations — the first involves indexing

90

ClassAds, the second involves out-of-order matching — are potentially compatible

with the enhanced gangmatching algorithm described in Chapter 5. Out-of-order

matching may require a more sophisticated method for assembling the regular gram-

mar representing valid gangs.

Building on work using the ClassAd language to specify set-matching

policies [42] for grid resource selection, a new language and matchmaking mech-

anism called Redline [41] has been developed based on a constraint language model.

Set-matching involves matching a single request ClassAd with an unspecified num-

ber of offer ClassAds. Redline expresses both the requirements and the attributes of

an entity as constraints, making it unclear which entities attributes belong to. How-

ever, Redline does allow querying of requirements, a feature that is not currently

possible in the ClassAd language.

Matchmaking has been explored in the field of agent technology [59, 48, 49,

60]. There are some similarities between ClassAds and agentcommunication lan-

guages [25, 22, 58], though ClassAds employ a representation more akin to a

database record than the rule-based representation used bythese languages. Sev-

eral matchmaking frameworks [63, 56, 50, 47, 18, 36] based ondescription log-

ics [19, 27, 5] have also been proposed. Like the agent communication languages,

these employ a rule-based representation.

91

There are also similarities between ClassAds matchmaking and the unification-

based matching used by Linda [24] and Datalog. Linda uses tuples containing vari-

ables or literals to search a tuple space for a matching tuple. Datalog operates sim-

ilarly on relational databases. While unification is certainly powerful enough to en-

compass the functionality of ClassAd-based matchmaking, the syntax of boolean

expressions used by the ClassAd language is clearer and moreconcise. There have

been efforts to draw on literature on constraint logic programming (CLP) [28], con-

straint query languages (CQL) [35], and constraint databases (CDB) [54] to add

constraints to Datalog [55, 39]. However, CQL and CDB typically assume a fixed

schema whereas ClassAds use a semi-structured data model.

7.2 Resource Management

Resource selection policy specification is an important issue in grid computing. Con-

dor uses the ClassAd language to specify resource selectionpolicies in grid com-

puting [61]. In Globus [13, 14], a suite of grid computing applications, customers

describe required resources in a resource specification language (RSL) based on a

predefined schema of the resources database in contrast to the schema free ClassAd

language. However, resources cannot place constraints on requests as in the bilateral

matchmaking model utilized by Condor.

A more powerful framework for resource management in distributed systems,

the Services Negotiation and Acquisition Protocol (SNAP) [15], maps resource in-

teractions to platform-independent service level agreements (SLAs). SNAP uses an

92

extensible language J for describing jobs along with a subset language R to describe

resource requirements. J is similar in purpose to RSL and ClassAds, but is more

extensible than the former and more rigorously typed than the latter. However, the

simplicity of the ClassAd language is one of its most attractive features. A more

complex language like J may not be as easy to use.

Another approach to resource management, also using SLAs and geared towards

grid computing, has been described here [20]. This framework uses a resource alloca-

tion policy language that is more expressive than RSL, but isnot as expressive as the

ClassAd language. In particular there is no support for arbitrary boolean expressions

like those available with ClassAds.

7.3 Trust Management

Authorization policy is a key component of trust managementsystems.

The SPKI/SDSI [21] framework has been discussed in some detail in Section 2.2.

The term rewriting approach to SPKI/SDSI was introduced in [12] along with an

algorithm for certificate chain discovery.

It is also possible to use pushdown systems (PDS) to represent SPKI/SDSI rewrite

rules [29, 30]. The enhanced gangmatching algorithm in Chapter 5 began as a gen-

eralization of thepost*algorithm for PDS reachability. A PDS is essentially a Push-

down Automaton without the capacity for generating a language. SPKI/SDSI cer-

tificates expressed as rewrite rules can be converted into a set of rules for a PDS,

and algorithms are available to enumerate all possible resulting stack states given an

93

initial stack state (post*) and all stack states antecedent to a given stack state (pre*).

Either thepre* or post* algorithm can be used to generate SPKI/SDSI certificate

chains. In addition several other aspects of Pushdown Systems are exploited to an-

swer specific authorization questions. However, neither the Break the Chainnor the

Missing Linkproblems are discussed. As a side note, it is possible to represent a

generic pushdown system using ClassAds and gangmatching, though the enhanced

gangmatching algorithm above would require some modifications.

Another trust management system, Keynote [8], uses the concept of assertions

to specify authorization policy. An assertion is very similar in function and form

to a SPKI/SDSI authorization certificate in that it identifies a principal making the

assertion (similar to an issuer of an auth cert in SPKI/SDSI)the recipients (subjects)

of the authorization and conditions of authorization. It may be possible to use the

ClassAd language as a concrete representation of the KeyNote model.

7.4 Policy Languages and Frameworks

The resource selection and authorization policies discussed in this dissertation both

fall under the category ofprovisions. Provisions are conditions that must be satisfied

or actions that must occur before a decision takes place. In contrastobligationsare

conditions or actions that must be fulfilled after a decisionhas been made [7]. One

example of an obligation policy is a service level agreement(SLA). An SLA is an

agreement between a service provider and a customer that specifies certain attributes

of the service such as availability, serviceability, performance and operation [66].

94

Obligation policy is the main focus in policy based management of networks. The

WSLA [3, 37, 17] framework for service level agreements usesa somewhat cumber-

some XML based representation for specification of obligation policy. PDL [43] ex-

presses obligation policies as event-condition-action rules. This framework is some-

what similar to the use of the ClassAd language to specify policy in Condor, except

that the events and actions are not formally defined. For example before an execute

machine can run a job Condor must evaluate aStart expression (usually identical

to the machine’sRequirements expression). In this case the event is a successful

match, the condition is theStart expression, and the action is running the job on the

machine. Hawkeye [2], a system monitoring application, uses ClassAds to describe

system events, ClassAd expressions to serve as triggers foridentifying interesting

behavior, and matchmaking to detect when events set off these triggers.

The Ponder policy language [16] can also be used to express both obligation and

authorization policies. Ponder is an object oriented language that allows for declara-

tion of policy types and instantiation of those types. Authorization policies contain a

subject (corresponding to a SPKI/SDSI issuer), a target (a SPKI/SDSI subject), a set

of actions being authorized, and a constraint expression indicating when this action

may be authorized. Additional authorization related polices in Ponder include infor-

mation filtering, delegation, and refrain policies. Obligation policies also contain a

subject, a target, a set of actions, and a “when” expression,in addition to a specifi-

cation of an event that triggers the policy. Ponder is clearly the most expressive of

the policy languages described thus far, but it does not havethe capability to express

95

resource selection policies.

Several other policy languages – such as Rei [33, 32, 34], Kaos [65, 64, 45], have

been developed specifically for the semantic web and grid computing applications.

These languages are typically based on description logics such as DAML and OWL.

A comparison of Rei, Kaos and Ponder is presented here [62]. Another language

based on description logics called PeerTrust [23, 6] was developed specifically for

automated trust negotiation. The rule language used by the PROTUNE [10] trust

negotiation framework is partially based on PeerTrust. A framework for policy anal-

ysis of rule-based policies [11], similar to the work presented in Chapters 3 and 6,

has been proposed. Aside from a rule-based notation, the most significant difference

between these languages and ClassAds is that none of them have been applied to

resource selection policy.

7.5 Query Analysis

Most of the work relevant to ClassAd analysis is in literature on databases, par-

ticularly on cooperative query answering. In [46] a mechanism called SEAVE is

presented for extracting and verifying presuppositions from queries. This mecha-

nism identifies queries that result in null answers, then finds more general queries by

weakening or deleting query sub-expressions. The result isa set of maximally gen-

eral erroneous presuppositions that may be of more value to the user than a simple

null answer.

96

Similar techniques are discussed more formally in [26]. Godfrey discusses identi-

fication ofminimal failing sub-queries(MFSs) andmaximal succeeding sub-queries

(MSSs). Godfrey’s MFSs are analogous to the erroneous presuppositions generated

by Motro’s SEAVE mechanism. The MSSs are the least general generalizations of

the initial successful query. An algorithm called ISHMAEL is presented that enu-

merates MFSs and MSSs. This algorithm is NP-hard for queriesof arbitrary length,

but remains polynomial for fixed length queries.

Finally, in [44] the notion of aquery difference operatoris introduced to indi-

cate missing information in query results. The authors discuss a system of resource

agents, brokers, and user agents that resembles the distributed framework used by

Condor. The primary focus of this work is to indicate the incompleteness of query

answers. The query difference operator is used to generate the description of the set

of results covered by the query, but not covered by the query answer. This set is ex-

pressed in relational algebra and can presumably be converted into a pseudo-English

response for the user.

ClassAd analysis uses similar techniques and notions to provide useful informa-

tion regarding matchmaking failure. As discussed previously, our conflict detection

algorithm covers similar territory as [26]. One key difference, as with the CQL and

CDB work discussed earlier, is the semi-structured data model which, unlike the re-

lational model discussed in the cited publications, does not require a fixed schema.

Another important difference is the reflexive nature of ClassAds. In database terms

a ClassAd contains both a query (the requirements expression) and a record (the set

97

of attributes with literal values). Nevertheless, many of the issues encountered in

ClassAd analysis are applicable in database query analysis, web search, or any other

field where boolean expressions are used as constraints.

98

Chapter 8

Conclusions and Future Work

Distributed computing environments provide users with a wide range of services that

a single isolated system can not provide. However, as in thisworld, with great power

there must also come – great responsibility [38]. Policies must be designed and

enforced to protect the interests of users and providers of these services. Resource

selection policies address the question: What kind of resource does a principal want,

and is such a resource available? Access control policies address the question: Can a

principal be trusted to have access to a given resource?

The framework for policy specification and interpretation presented in this disser-

tation provides a clearing house for both types of policies.It is built on the simple yet

powerful concept of matchmaking. The ClassAd language and matchmaking algo-

rithms were initially developed to solve resource selection problems in a distributed

system. As we have shown, the same framework with some minor modifications is

applicable to managing access control policies.

We have demonstrated that the ClassAd language can be used tospecify

SPKI/SDSI authorization policies, and an enhanced gangmatching algorithm can be

used to assemble SPKI/SDSI certificate chains correctly andefficiently. We have also

99

presented the necessary theoretical underpinnings of the enhanced gangmatching al-

gorithm which generalize beyond the specific instance of SPKI/SDSI certificate chain

discovery. Finally, we have demonstrated analysis techniques for bilateral and mul-

tilateral matchmaking that serve as essential tools for comprehending matchmaking

results. Taken together these contributions provide a robust framework for specifying

and interpreting resource allocation policies.

Further research is possible in a number of areas. The enhanced gangmatching al-

gorithm presented in Chapter 5 allows for the creation of gangs with unlimited depth,

such as the ClassAd equivalent of a SPKI/SDSI certificate chain. Set-matching [42]

is an extension of gangmatching that allows for the creationof gangs with unlimited

breadth, such as an unspecified number of compute machines satisfying a require-

ment for minimum total processing power. It is possible thatenhanced gangmatching

and set-matching could be integrated into a more powerful matchmaking process.

In Chapter 7, a distinction was drawn between two types of policy: provisionsand

obligations[7]. The resource selection and authorization policies discussed in this

dissertation fall under the category of provisions, or policies that must be adhered

to before a resource or service can be used. Obligations are policies that dictate

the terms of use for a resource or service while it is being used. A common type of

obligation is a service level agreement (SLA). The service level agreements described

in the WSLA [3] framework could be expressed as ClassAds, a matchmaking process

could be used to determine if the SLA is violated, and matchmaking analysis could

be used to determine the cause of the violation.

100

An aspect of SPKI/SDSI authorization that is not dealt with in this dissertation is

the actual rights granted by a certificate. Specifying theserights and determining how

they are delegated can be very complex. However, a basic implementation of rights

delegation could be added to the ClassAd representation of SPKI/SDSI certificates

described in Chapter 4 without impacting the algorithm discussed in Chapter 5.

The algorithm presented in Chapter 5, like the algorithms in[12] and [29] assume

a centralized facility for certificate chain assembly. Thismeans that while the speci-

fication of policy may be distributed, the interpretation ofpolicy is not. A distributed

algorithm for assembling credential chains using weightedpushdown systems has

been proposed for SPKI/SDSI [31]. Additionally, the trust management language

RT0 [40] was designed to support a distributed algorithm that can be applied to SDSI.

In the general case of gangmatching, a distributed algorithm would certainly be pos-

sible, but not without some added complications. The primary problem is how to

make temporary reservations of resources that may be canceled if a complete gang

can not be found. As in distributed transactions in databasesystems, some sort of

two-phased commit could be used.

In the realm of resource allocation, matchmaking provides the convenience of

bringing together principals with common interests. The facility for policy diagnos-

tics using matchmaking analysis provides the equally important role of determining

why policies are successful or unsuccessful. Included in the great responsibility re-

ferred to above is the responsibility to evaluate the effectiveness of policies and to

change these policies when they are ineffective or doing harm. The maintenance of

101

healthy communities, whether real or virtual, requires thefree flow of information

built on the foundation of trust, integrity, and common goals.

102

Bibliography

[1] Condor version 6.8 manual, section 3.6: Security in condor.

http://www.cs.wisc.edu/condor/manual/v6.8/36Security.html.

[2] A monitoring and management tool for distributed systems.

http://www.cs.wisc.edu/condor/hawkeye/.

[3] Web Service Level Agreements (WSLA) Project.

http://www.research.ibm.com/wsla/.

[4] A. Arpaci-Dusseau, R. Arpaci-Dusseau, N. Burnett, T. Denehy, T. Engle,

H. Gunawi, J. Nugent, and F. Popovici. Transforming policies into mecha-

nisms with infokernel. InProceedings of the 19th ACM Symposium on Operat-

ing Systems Principles (SOSP ’03), Bolton Landing (Lake George), New York,

October 2003.

[5] F. Baader and W. Nutt. Basic description logics. In F. Baader, D. Calvanese,

D. McGuinness, D. Nardi, and P.F. Patel-Schneide, editors,The Description

Logic Handbook: Theory, Implementation, and Applications. Cambridge Uni-

versity Press, 2003.

[6] J. Basney, W. Nejdl, D. Olmedilla, V. Welch, and M. Winslett. Negotiating trust

on the grid. InSemantic Grid, 2005.

103

[7] C. Bettini, S. Jajodia, S. Wang, and D. Wijesekera. Provisions and obligations

in policy rule management and security applications. InProceedings of 28th

International Conference on Very Large Data Bases (VLDB), pages 502–513,

Hong Kong, China, August 2002.

[8] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis.The KeyNote trust-

management system version 2. RFC 2704, September 1999.

[9] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In

Proceedings of the IEEE Conference on Security and Privacy, May 1996.

[10] P. A. Bonatti and D. Olmedilla. Driving and monitoring provisional trust nego-

tiation with metapolicies. InPOLICY, pages 14–23, 2005.

[11] P. A. Bonatti, D. Olmedilla, and J. Peer. Advanced policy explanations on the

web. InECAI, 2006.

[12] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos, and R. Rivest. Cer-

tificate chain discovery in SPKI/SDSI.Journal of Computer Security, 9(4):285–

322, 2001.

[13] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and

S. Tuecke. A Resource Management Architecture for Metacomputing Systems.

In Proceedings of IPPS/SPDP ’98 Workshop on Job Scheduling Strategies for

Parallel Processing, pages 62–82, 1998.

104

[14] Karl Czajkowski, Ian T. Foster, and Carl Kesselman. Resource co-allocation in

computational grids. InHPDC, 1999.

[15] Karl Czajkowski, Ian T. Foster, Carl Kesselman, VolkerSander, and Steven

Tuecke. Snap: A protocol for negotiating service level agreements and coor-

dinating resource management in distributed systems. InJSSPP ’02: Revised

Papers from the 8th International Workshop on Job Scheduling Strategies for

Parallel Processing, pages 153–183, London, UK, 2002. Springer-Verlag.

[16] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponderpolicy specifi-

cation language.Lecture Notes in Computer Science, 1995:18–38, 2001.

[17] M. Debusmann and A. Keller. Sla-driven management of distributed systems

using the common information model. mar 2003.

[18] G. Denker, L. Kagal, T. Finin, M. Paolucci, and K. P. Sycara. Security for daml

web services: Annotation and matchmaking. InInternational Semantic Web

Conference, pages 335–350, 2003.

[19] F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in description

logics. In Gerhard Brewka, editor,Principles of Knowledge Representation,

pages 191–236. CSLI Publications, Stanford, California, 1996.

[20] C. Dumitrescu, M. Wilde, and I. T. Foster. A model for usage policy-based

resource allocation in grids. InPOLICY, pages 191–200, 2005.

105

[21] C. Ellison, B. Frantz, B. Lampson, R. L. Rivest, B. Thomas, and T. Ylonen.

SPKI certificate theory. RFC 2693, September 1999.

[22] T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML asan agent commu-

nication language. InProc. of the Third Int’l Conf. on Information and Knowl-

edge Management, CIKM-94. ACM press, nov 1994.

[23] R. Gavriloaie, W. Nejdl, D. Olmedilla, K. Seamons, and M. Winslett. No reg-

istration needed: How to use declarative policies and negotiation to access sen-

sitive resources on the semantic web. InESWS, pages 342–356, 2004.

[24] David Gelernter. Generative communication in linda.ACM Trans. Program.

Lang. Syst., 7(1):80–112, 1985.

[25] M. Genesereth, , N. Singh, and M. Syed. A distributed anonymous knowledge

sharing approach to software interoperation. InProc. of the Int’l Symposium on

Fifth Generation Computing Systems, pages 125–139, 1994.

[26] P. Godfrey. Minimization in cooperative response to failing database queries.

International Journal of Cooperative Information Systems(IJCIS), 6(2):95–

149, June 1997.

[27] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive de-

scription logics. In H. Ganzinger, D. McAllester, and A. Voronkov, editors,

Proceedings of the 6th International Conference on Logic for Programming

106

and Automated Reasoning (LPAR99), number 1705, pages 161–180. Springer-

Verlag, 1999.

[28] J. Jaffar and M. J. Maher. Constraint logic programming: A survey. J. Log.

Program., 19/20:503–581, 1994.

[29] S. Jha and T. Reps. Analysis of SPKI/SDSI certificates using model checking.

In Proceedings of IEEE Computer Security Foundations Workshop (CSFW).

IEEE Computer Society Press, 2002.

[30] S. Jha and T. W. Reps. Model checking spki/sdsi.Journal of Computer Security,

12(3-4):317–353, 2004.

[31] S. Jha, S. Schwoon, H. Wang, and T. W. Reps. Weighted pushdown systems

and trust-management systems. InTACAS, pages 1–26, 2006.

[32] L. Kagal, T. Finin, and A. Joshi. A policy based approachto security for the se-

mantic web. InInternational Semantic Web Conference, pages 402–418, 2003.

[33] L. Kagal, T. W. Finin, and A. Joshi. A policy language fora pervasive comput-

ing environment. InPOLICY, pages 63–, 2003.

[34] L. Kagal, M. Paolucci, N. Srinivasan, G. Denker, T. Finin, and K. Sycara. Au-

thorization and privacy for semantic web services.IEEE Intelligent Systems,

19(4):50–56, 2004.

[35] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query languages.

In PODS, pages 299–313, 1990.

107

[36] T. Kawamura, J. De Blasio, T. Hasegawa, M. Paolucci, andK. Sycara. Public

deployment of semantic service matchmaker with uddi business registry. In

International Semantic Web Conference, pages 752–766, 2004.

[37] A. Keller and H. Ludwig. Defining and monitoring servicelevel agreements for

dynamic e-business. nov 2002.

[38] S. Lee. Amazing Stories #15, August 1962.

[39] N. Li and J. C. Mitchell. Datalog with constraints: A foundation for trust man-

agement languages. InPADL, pages 58–73, 2003.

[40] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed credential chain

discovery in trust management.Journal of Computer Security, 11(1):35–86,

2003.

[41] C. Liu and I. Foster. A constraint language approach to matchmaking. InPro-

ceedings of the 14th International Workshop on Research Issues on Data Engi-

neering (RIDE’04), pages 7–14, March 2004.

[42] C. Liu, L. Yang, I. Foster, and D. Angulo. Design and evaluation of a re-

source selection framework for grid applications. InProceedings of the 11th

IEEE International Symposium on High Performance Distributed Computing

(HPDC11), July 2002.

[43] J. Lobo, R. Bhatia, and S. Naqvi. A policy description language. InAAAI/IAAI,

pages 291–298, 1999.

108

[44] M. Minock, M. Rusinkiewicz, and B. Perry. The identification of missing in-

formation resources by using the query difference operator. Technical report,

MCC, April 1999.

[45] L. Moreau, J. M. Bradshaw, M. Breedy, L. Bunch, P. J. Hayes, M. Johnson,

S. Kulkarni, J. Lott, N. Suri, and A. Uszok. Behavioural specification of grid

services with the kaos policy language. InCCGRID, pages 816–823, 2005.

[46] A. Motro. SEAVE: A mechanism for verifying user presuppositions in query

systems.ACM Transactions on Office Information Systems, 4(4):312–330, Oc-

tober 1986.

[47] T. Di Noia, E. Di Sciascio, F. M. Donini, and M. Mongiello. Abductive

matchmaking using description logics. InProceedings of Eighteenth Interna-

tional Joint Conference on Artificial Intelligence (IJCAI03), pages 337–342,

aug 2003.

[48] E. Ogston and S. Vassiliadis. Local distributed agent matchmaking. InCoopIS,

pages 67–79, 2001.

[49] E. Ogston and S. Vassiliadis. Unstructured agent matchmaking: experiments in

timing and fuzzy matching. InSAC, pages 300–305, 2002.

[50] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic matching of

web services capabilities. InInternational Semantic Web Conference, pages

333–347, 2002.

109

[51] R. Raman.Matchmaking Frameworks for Distributed Resource Management.

PhD thesis, University of Wisconsin, Madison, 2000.

[52] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed resource

management for high-throughput computing. InProceedings of the Seventh

IEEE International Symposium on High Performance Distributed Computing

(HPDC7), July 1998.

[53] R. Raman, M. Livny, and M. Solomon. Policy driven heterogeneous resource

co-allocation with gangmatching. InProceedings of the Twelfth IEEE Inter-

national Symposium on High Performance Distributed Computing (HPDC12),

Seattle, WA, June 2003.

[54] P. Z. Revesz. Constraint databases: A survey.Lecture Notes in Computer

Science, 1358:209–246, 1998.

[55] P. Z. Revesz. Safe datalog queries with linear constraints. InCP, pages 355–

369, 1998.

[56] E. Di Sciascio, F. M. Donini, and M. Mongiello. Knowledge representation for

matchmaking in p2p e-commerce. InAtti del VIII Convegno dell’Associazione

Italiana di Intelligenza Artificiale, sep 2002.

[57] M. Solomon. The ClassAd language reference manual version 2.4, May 2004.

http://www.cs.wisc.edu/condor/classad/refman/.

110

[58] K. Sycara, K. Decker, A. Pannu, M. Williamson, and D. Zeng. Distributed

intelligent agents.IEEE Expert, pages 36–46, dec 1996.

[59] K. Sycara, K. Decker, and M. Williamson. Matchmaking and brokering. In

Proc. of the Second Int’l Conf. on Multi-Agent Systems (ICMAS-96), Dec 1996.

[60] K. Sycara, S. Widoff, M. Klusch, and J. Lu. Larks: Dynamic matchmaking

among heterogeneous software agents in cyberspace.Autonomous Agents and

Multi-Agent Systems, 5(2):173–203, 2002.

[61] D. Thain, T. Tannenbaum, and M. Livny. Condor and the grid. In Fran Berman,

Geoffrey Fox, and Tony Hey, editors,Grid Computing: Making the Global

Infrastructure a Reality. John Wiley & Sons Inc., December 2002.

[62] G. Tonti, J. Bradshaw, R. Jeffers, R. Montanari, N. Suri, and A. Uszok. Se-

mantic web languages for policy representation and reasoning: A comparison

of kaos, rei, and ponder. InInternational Semantic Web Conference, pages

419–437, 2003.

[63] D. Trastour, C. Bartolini, and J. Gonzalez-Castillo. Asemantic web approach

to service description for matchmaking of services. InSWWS, pages 447–461,

2001.

[64] A. Uszok, J. Bradshaw, and R. Jeffers. Kaos: A policy anddomain services

framework for grid computing and semantic web services. IniTrust, pages 16–

26, 2004.

111

[65] A. Uszok, J. M. Bradshaw, R. Jeffers, N. Suri, P. J. Hayes, M. R. Breedy,

L. Bunch, M. Johnson, S. Kulkarni, and J. Lott. Kaos policy and domain ser-

vices: Toward a description-logic approach to policy representation, deconflic-

tion, and enforcement. InPOLICY, pages 93–, 2003.

[66] A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Herzog,

A. Huynh, M. Carlson, J. Perry, and S. Waldbusser. Policy terminology. RFC

3198, November 2001.

