A MATCHMAKING APPROACH FOR
DISTRIBUTED POLICY SPECIFICATION
AND INTERPRETATION

By

Nicholas Coleman

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OFPHILOSOPHY

(COMPUTER SCIENCES)

at the
UNIVERSITY OF WISCONSIN — MADISON

2007

Abstract

In a distributed system, the separation of policy and meishars a vital principle.
This separation can be achieved by devising a language éoifgmg policy and an
engine for interpreting policy. In the Condor [52] high thghput distributed system
the ClassAd language [57] is used to specify resource satepblicy and match-
making is used to interpret that policy. ClassAds and mastting are not currently
used for authorization policies in Condor. SPKI/SDSI [&laipublic key infrastruc-
ture for authorization policy. This dissertation shows tBlassAds and matchmak-
ing can implement SPKI/SDSI, thereby complementing theusse selection policy
capabilities of Condor with the authorization policy caiiibs of SPKI/SDSI. Tech-
niques for policy analysis in the context of resource saaciand authorization are
also presented.

The ClassAd language is based on the concept of classifiedtethments. En-
tities in Condor are represented by classified advertisey@rClassAds. Each job
submitted by a condor user has a corresponding ClassAd asdoh compute ma-
chine. The matchmaking process pairs jobs with machinesdbas the policies
expressed in their ClassAds. Since the bilateral matchmgdkamework is not suf-
ficient for assembling three or more parties a multilateratanmaking framework,
gangmatchingis required in such cases. A collection of three or more<Ads that

satisfy each others requirements is calleghag

SPKI/SDSI is an infrastructure for expressing author@apolicy using public
key encryption. Two kinds of certificates can be issued byrecgral. Anauthoriza-
tion certificategrants another principal a set of access rights for a res@sgovell as
the permission to delegate these rights to other principateame certificatereates
a name for another principal or set of principals. A comborabf several certifi-
cates that authorize a principal to access a resource &lcadertificate chain The
problem of assembling a suitaldertificate chairfor a given authorization is called
thecertificate chain discovery problejh?2].

In the case of bilateral matchmaking, this dissertatiors@més analysis tech-
niques for solving two key problemd:Don’t Like Anyoneand Nobody Likes Me
The | Don't Like Anyoneproblem occurs when the resource selection policy for a
resource request rejects all available resources. Ndi®dy Likes m@roblem oc-
curs when the resource selection policies for resourcesofégect a given resource
request.

Furthermore, this dissertation presents a represen@itiSRKI/SDSI certificates
using the ClassAd language in a gangmatching context. As@thsepresenting a
certificate is composed of several nested ClassAds cptieid One of these ports
offers the certificate for use in a chain. If needed, additiqrorts request other
certificates to resolve a SPKI/SDSI name or delegate an ap#tion. A gang of
such ClassAds corresponds to a chain of certificates.

In order to support the capability to reuse a certificatefindely in a chain while

avoiding infinite loops, a modified algorithm for gangmatahis presented. Formal

definitions of the static and dynamic structures used byallgisrithm are stated along
with formal definitions of the concepts efjuivalenceevaluation andvalidity. The
algorithm itself is then presented, its correctness is gupwand its complexity is
analyzed.

In the case of multilateral matching, two more matchmakinglysis problems
are presented along with their solutiorBreak the Chairand Missing Link The
Break the chairproblem occurs when an authorization policy grants an acttex
needs to be revoked. To revoke an authorization, a set dficates must be in-
validated such that no chain can be constructed grantinguti®rization. A new
algorithm using the results of the gangmatching algoritdentifies a set of Class-
Ads representing such certificates. Missing Linkproblem occurs when a desired
authorization is not granted by any certificate chain. A rfiediversion of the gang-
matching algorithm identifies the additional certificat@€3lAds needed to complete
a gang representing a chain of certificates granting theetkauthorization.

The algorithms and strategies presented in this dissemtetimprise a rich frame-
work for policy specification and interpretation suitabbe fesource selection and
authorization. The use of the ClassAd language for poli@cgjgation and match-
making for policy interpretation achieves a separationadicy and mechanism. The
combination of supporting resource selection policiesauttiorization policies pro-
vides robust support for resource allocation in a distedwgnvironment. The tech-
niques for matchmaking analysis provide a means for uraleilgtg why existing

policies do not produce desired results.

Acknowledgments

First and foremost | would like to thank Dr. Miron Livny and.Ovlarvin Solomon
for giving me the opportunity to work on the Condor projeat $even years. Many
thanks to the ever expanding Condor team, both studentstaffid Bhe experience
and wisdom | gained working on Condor has been significantygh the most sig-
nificant piece of wisdom is that | still have so much more tanean particular |
would like to thank Pete Keller, Peter Couvares, Todd Tahaam, Derek Wright,
Dr. John Bent, Dr. Doug Thain, lan Alderman, Nick LeRoy, and Blain Roy for
guiding me through the maze that is Condor. | would also likéhaank Dr. Marvin
Solomon for his patience, frank advice, stories from thedgold days of Computer
Science, and most particularly for believing in me when é@msed that no one else
would.

Several people helped with editing earlier versions of tlatemial in this disser-
tation including Dr. Hao Wang, Dr. Stefan Schwoon, Dr. Jolem® Dr. Somesh
Jha, Dr. Rajesh Raman, and Dr. Marvin Solomon. My researalidvoot have
been possible without the strong shoulders of Dr. RajeshdRathe inventor of the
ClassAd language and gangmatching, to stand on. Thougtctiteid many times
in this work, | must make special mention of the work by Dr. ®sim Jha and Dr.
Tom Reps on SPKI/SDSI and Pushdown systems, which servestagiag point for

my exploration of gangmatching and SPKI/SDSI. My sinceraitrde goes to Dr.

James Cercone and the Department of Computer Science aViiggsia University
Institute of Technology for providing me with an opportynio work at Tech as a
Visiting Professor, without which the completion of my degmould not have been
possible. | might have never applied to graduate schoohi&dn’t been for the en-
couragement of Dr. James Lipton at Wesleyan University, alBo first introduced
me to programming language theory and mathematical logic.

Last, but certainly not least, | would like to thank my fam#éyd especially
my fiancée Heather James for a seemingly infinite amount tidrnpze and support.
Heather has stuck with me through thick and thin, and hasraged to have faith in

me even when | had little faith in myself.

Contents
Abstract i
Acknowledgments \Y
1 Introduction 1
2 Background 6
2.1 The ClassAd Language and Gangmatching 6
2.2 SPKI/SDSI e 9
3 Matchmaking Analysis 12
3.1 IDontLike Anyone 15
3.1.1 Detecting Conflicts 18
3.2 NobodyLikesMe 22
4 ClassAd Representation of SPKI/SDSI Certificates 28
4.1 Transforming SPKI/SDSI Certificates to ClassAds 29
4.2 Compatibility and Composition. 92
4.3 NameResolution 30
4.4 Authorizationand Delegation 4 3
4.5 Certificate Chain Gangmatching 37

Vi

5 Gangmatching: Structures, Concepts and Algorithms

5.1

5.2

5.3

Gangmatching Structures L.
5.1.1 Static Structures
5.1.2 Dynamic Structures.
GangmatchingConcepts
521 Equivalence.
5.2.2 Partial Evaluationand Validity
Gangmatching Algorithm
53.1 Correctness

532 Complexity

6 Gangmatching Analysis

6.1

6.2

Breakthe Chain

MissingLink

7 Related Work

7.1
7.2
7.3
7.4

7.5

Matchmaking
Resource Management
Trust Management

Policy Languages and Frameworks

Query Analysis

8 Conclusions and Future Work

Vil

98

viii

Bibliography 102

Chapter 1

Introduction

One of the challenges of distributed computing environmenthe specification and
interpretation of policy. The separation of policy and meukm has long been one
of the key principles in systems design. This principle difigs the specification
of policies and keeps them independent of implementati@angbs. One way of
achieving separation is to provide a policy framework csinsg of a language for
specifying policies and an engine for interpreting theskcyes in the context of a
given set of system conditions. The flexibility of such a feamork is particularly
suitable for resource allocation policy in a distributedtsyn.

Distributed systems are dynamic in that principals anduess may join or leave
the federation at any time. Allocation of resources in a deadized environment re-
quires policy for resource selection and access controso®ee selection is the
process of finding resources that satisfy a principal’s estpi Access control poli-
cies determine whether the principal is permitted to actiessesources. Currently
there is no single language or framework that deals withaightion and resource
selection policies.

Advertising languages such as the ClassAd language useddbglo€ [52], a

widely used production-quality distributed computingtsys, provide a means for

expressing resource selection policies. Offers and régjd@sresources are repre-
sented by classified advertisements (ClassAds). ThessAtlasare then subjected
to a matchmaking process that attempts to find compatibéefbr a given request
and pick the “best” offer as determined by the requestesepences and system
wide policies. Access control policy in Condor is not spedifin this fashion; in-
stead, policy is expressed in a configuration file. Furtheentioe allowed or denied
accesses are at the granularity of a single machine, nofidhugil files or devices on
that machine [1].

Trust management systems [9] like SPKI/SDSI [21] define fdrianguages for
expressing access control policies in distributed envirents and provide algorithms
to determine if a principal is authorized to access a resoUs&KI/SDSIhame cer-
tificatesdefine a name space that allows a principal to refer to othecipals indi-
rectly. SPKI/SDSlauthorization certificategrant a principal access to a resource,
and may allow the principal to delegate that access. A aienust present a set of
these certificates, calledcartificate chainto gain access to a resource. The problem
of marshaling such a set is known eartificate chain discoverySolutions to this
problem based on formal language techniques can be foud@29].

An implicit assumption in these systems is that policiesésiource selection and
access control are independent of one another. This assumfgits when a resource
that satisfies a principal’s requirements is selected, Bohot be accessed by the
principal without proper credentials. One solution to ghisblem is use a multilat-

eral matchmaking ogangmatching53] paradigm to select resources and assemble

the credentials necessary to access those resources. @ahgmy, described more
thoroughly in [51], does not address the situation whererapecified quantity of
credentials is required to access a resource, as is ofteasiedn a trust management
system like SPKI/SDSI.

The major contributions of this dissertation are as follows

e A framework for the bilateral matchmaking analysis used lopdbr to iden-
tify problems with resource selection policies. This framwek is applied to
the problem in Condor of identifying why a job can not be mattiith any

available machines.

o Aframework for multilateral matchmaking analysis with #pations for iden-
tifying problems with authorization policies. The spec#igthorization prob-
lems are the failure of a desired authorization and the ssookan undesired

authorization.

e A ClassAd representation for SPKI/SDSI certificates th&aved certificate
chains to be assembled using a gangmatching algorithm. @hstraction
of certificate chains from these ClassAds correctly implets&PKI/SDSI se-

mantics for certificate compatibility and composition.

e An enhanced gangmatching algorithm capable of assemi@inidicate chains

comprised of an unspecified quantity of certificates.

e Formal definitions of structures and concepts employedearetihanced gang-
matching algorithm. The primary concepts involved are emence of inter-

mediate structures and partial evaluation of ClassAd esiwes.

A working definition of policy is needed before discussing thetails of the
framework for policy specification and interpretation. TR F Networking Group

defines policy in two ways [66]:

1. A definite goal, course or method of action to guide andrd@te present and

future decisions.
2. A set of rules to administer, manage, and control accessttork resources.

More informally, Arpaci-Dusseau et al [4] define policy as $ttheme for deciding
what should be done.

When discussing policy it is also important to distinguigivieeenspecification
interpretationandenforcementlin order to specify policies robustly one needs a lan-
guage that can describe the principals in a system, the cldlte system or parts
thereof, and conditions that must be satisfied. Once oneléstatspecify policies
a facility is needed to interpret them in a given context. Triterpretation stage is
where the policy decisions indicated by the above defirsteme made. Finally, once
a given decision is made actions must be taken to enforcedtisidn. This dis-
sertation lays out a matchmaking framework using the ClddaAguage to provide
policy specification and interpretation for distributedtgms.

Chapter 2 provides background information on ClassAdsgetching, and

SPKI/SDSI. Chapter 3 presents an analysis framework fatdyl matchmaking
with the ClassAd language. Chapter 4 describes a ClassAgidaye representation
of SPKI/SDSI certificates, shows that a matching set of tli&lagsAds is equiva-
lent to a corresponding certificate chain, and recasts ttigicate chain discovery
problem as a gangmatching problem. Chapter 5 presents angécigng algorithm
that can handle the reuse of ClassAds, necessary for SPRI/S8&rtificate chain
discovery, and shows that the application of the algoritbr@lassAds representing
SPKI/SDSI certificates has the same worst case time contylasithepost* algo-
rithm for certificate chain discovery presented in [29]. Qe 6 extends the bilateral
matchmaking analysis framework to gangmatching. Chapeeplores related work,

Chapter 8 presents directions for future work and concltiteslissertation.

Chapter 2

Background

2.1 The ClassAd Language and Gangmatching

The ClassAd language is used by Condor primarily to adweerésources and re-
guests for those resources in a distributed environmentadvertisement, called a
ClassAd represents an offer of or request for a resource and certfistamed de-
scriptive attributes, constraints and preferences. Thetcaints are expressed by an
attribute namedRequi r enent s, and the expression of the preferences is named
Rank. ! A matchmaking process is used to discover offers and resjtiest satisfy
one another’s constraints and best suit one another’'srprefes. If more than two
parties are involved — such as a job, a machine, and a liceas@ateral matchmak-
ing scheme is insufficient and a multilateral framework]ezhjangmatching53],
must be used.

In the gangmatching framework a multilateral match is bro#tewn into several
bilateral matches. A set of ClassAds that satisfy one amstbenstraints is called a

gang Each ClassAd contains a list of nested ClassAds caltats each of which

1To simplify matters this dissertation deals only wRequi r enent s expressions and omits
Rank expressions from example ClassAds.

represents a single bilateral match. A gangasnpleteif all ports of all ClassAds
in the gang have been successfully matched to ports of otlass&ds in the gang.
A port that has not been matched is@yenport. Given a portP of a ClassAd and
a potentially matching por?’ of another ClassAd, a reference ihto an attribute
at t r defined inP’ is represented ag her . at t r to distinguish it from a reference
to an attribute inP. In addition, P has a label that is used by subsequent ports in
the same ClassAd to reference attributes define®’inlf P’'s label isl abel , a
reference in a subsequent port to an attritatté r defined inP’ is represented as
| abel . attr. The attributeat t r is importedfrom P’ and is called ainmported
attribute

Figure 1 shows a gangmatching ClassAd representing a jabCldssAd has two
ports: the first requests a machine to run the job, and thende®muests a license
to run a particular application on that machine. In Begjui r ement s expression
of the first port of the job ClassAd, a reference to the attaldenor y, imported
from a matching ClassAd representing a machine, is expitexssd her . Menory.
The port is labelea pu, and the subsequent port contains a reference toldine
attribute imported from the ClassAd matching the first pgpressed aspu. Nane.
In contrast, a locally defined attribute likerageSi ze is referenced locally without
using a prefix.

A gang is tree-structured, which means that some ClassAgsotaxpress con-
straints on other ClassAds directly. For example, in Figutbe job ClassAd con-

tains a port requesting a machine and another port reqgestinoense. The license

[
Ports = {

[/] request a workstation
other = cpu;
Type = "cpu_request";
| mageSi ze = 28M
Requirements =

ot her. Type == "Machi ne" &&
ot her. Arch == "I NTEL" &&
ot her. QSys == "LINUX" &&

ot her. Menory >= | nageSi ze

]

[/] request a license
other = license;
Type = "license_request”;
CPUNane = cpu. Nane;
Crd = "run_sinf;
Requirements =
ot her. Type == "License" &&
ot her. App == Cnd

Figure 1: A gangmatching ClassAd for a job

and machine ClassAds that match may each contain a portssipgeconstraints
on the job, but may not have ports expressing constraintsneraaother. This re-
striction can be circumvented if the job exports attribumegorted from the machine
ClassAd in the license port. In Figure 1 thane attribute of thecpu ad is ex-
posed in the license port by the definitiGRUName = cpu. Nanme. The matching
license ClassAd can indirectly reference tegare attribute of the machine ClassAd
asot her. CPUNane. Circular dependencies are avoided by the restrictionahat

port may only use imported attributes from previous ports.

2.2 SPKI/SDSI

SPKI/SDSI is a trust management system that specifies acops®l policies using
certificates. A SPKI/SDSI certificate is a declaration byiagpal, theissuerof the
certificate, about the naming of another principal,ghbjectof the certificate, or the
authorization for the subject to access a resource.

Principals are represented by a unique public key. They ney lze referred
to indirectly by aSPKI/SDSI name A SPKI/SDSI name consists of a public key
followed by zero or more identifiers. The identifiers navegathierarchical name
space, similar to a hierarchical directory structure. F@neple, if K, represents the
principal named Alice, then the SPKI/SDSI namié 1 Bob Carol” can be resolved
by looking up the identifier “Bob” in Alice’s namespace. Assng that/k, Bob
resolves toK gz, Bob’s public key, the identifier “Carol” must now be looked un
Bob’s namespace. If Bob has defined the identifier “Carolesmoive toK -, Carol’s
public key, then K 4, Bob Carol” is equivalent to the SPKI/SDSI namds; Carol”
and “Ko."

A name certificater{ame cerfdefines a name in the issuer’s local name space by
assigning an identifier to a SPKI/SDSI name that represhetsubject of the certifi-
cate. An authorization certificatalfth cer) indicates that the issuer (represented by
a public key) authorizes the subject (represented by a SE¥SI nhame) to access a
resource. Both the resource and the permission being grargespecified in an auth
cert. For the purposes of this dissertation we are only aoeckwith a single anony-

mous resource and a generic operation on that resource. tArcan also indicates

10

whether or not the authorization may be delegated.

In this dissertation we shall adopt the representation dificates as rewrite
rules with the issuer on the left and the subject on the righihtoduced in [12].
Four examples of this rewrite rule representation are shovwagure 2.

(1)KRD—>KA Bob [
(2) Ky Bob — Kpg
(3) Ky — Kp Carolll
(4) K Carol— K¢

Figure 2: SPKI/SDSI certificates as rewrite rules

There are four principals involved in the example certiisain Figure 2: the
administrator of resourcg (identified by the public key{), Alice, Bob, and Carol
(identified by their public key#(4, K, andK). Certs (2) and (4) are nhame certs
that indicate that the identifier “Bob” in Alice’s name spaepresents Bob’s key, and
the identifier “Carol” in Bob’s name space represents Caraty. Certs (1) and (3)
are auth certs, denoted by theafter the subject. In cert (1), the subjeét; Bob”
is granted access to the resoufteThe[] at the end indicates that the subject may
delegate this access right. Similarly, cert (3) grants thgext “K 3 Carol” access to
whateverKk iz has access to. THR at the end of this cert indicates that the subject
may not delegate this access right.

The use of delegation and an indirect naming scheme meansitita than one
certificate may be necessary for a principal to access ameso&uch a set of one
or more certificates is called eertificate chain A certificate chain may also be

represented by a rewrite rule, derived from the composdfamompatible certificates.

11

As defined in [12], cert€); = K; A; — S; andC; = Ky Ay — S, arecompatible
if S; =K, Ay X for some sequence of zero or more identifiarqthat is K, A,
is a prefix ofS;). Thecompositionof C; andCs,, written asC; o Cs is defined by

replacing the prefix of; with S,. Using the term rewriting notation:

Cl=K1A1HK2A2X
02:K2A2—>52

01002:K1A1—>52X

Certificate chains are built by repeated use of composition.

Returning to the examples in Figure 2, we can form cert chlaynsomposing
compatible certificates. (b)(2) = Kz 0 — K O authorizess ' to access resource
R and to delegate that access right; ¢3}) = Kz [0 — K- B grantsK access to
whateverK i has access to. Putting these two chains together we getaire(¢h) o
(2)) o ((3) o (4)) = Kr O — K B that authorizes(to access resourde, but not
to delegate that access right. The problem of assembling awhain is called the
certificate chain discovery problem. Solutions based om&ébtanguage techniques

can be found in [12, 29].

12

Chapter 3

Matchmaking Analysis

Occasionally in Condor a submitted job’s ClassAd does nathmaith any machine

ClassAds. This situation occurs when none of the machines the submitted job’s

requirements, when the job does not meet the requirementseahachine candi-
dates, or a combination of these two circumstances. In tiapter we will treat the

first two problems separately and assume that they are radedel Using a dating
service analogy we refer to the first casd &on't Like Anyoneand the second as
Nobody Likes Me

Requirements expressions are most commondiysjunctive normal forniDNF),

a disjunction of conjunctions of atomic Boolean proposisioln most requirements
expressions the atoms are in the form of predicates thaerataattribute to a literal

value or constant by means of a comparison relation. An el@aiguch a predicate

is
ot her. QpSys == " LI NUX".

We shall often refer t@lausegsthat are conjunctions of predicates in this form. An

example of such a clause is the following:

13

(other.OpSys == "LINUX") &&
(other.Arch == "I NTEL") &&

(ot her. Menory >= 512M

In the majority of ClassAds a requirements expression stssf a single clause but
sometimes they are disjunctions of such clauses. We stwlhaes all requirements
expressions are in DNF. There are well known algorithmsrammdforming arbitrary
arbitrary expressions into this form, but we find that in pie; most requirements
are already in DNF. Additionally any atom that is not in thenfioof a predicate as
we have described may be treated as an atom that cannot biedodi

We may look at the matchmaking process geometrically, whegecollection
of attributes with literal values in a ClassAd is represdritg a point inn dimen-
sional space where each dimension corresponds to a sitrgjbeitEt andn is the total
number of attributes in the ClassAd. Clauses are repredémtdis space by di-
mensional rectangles, dryper-rectangles Thel Don't Like Anyonecase consists
of a single hyper-rectangle (the job requirements expra3sind many points (the
machine ClassAds) that lie outside the hyper-rectanglee gdal is to expand the
hyper-rectangle to enclose at least one point. Mbbody Likes Me&ase is the re-
verse with many hyper-rectangles (the machine requiresnexgressions) and one
point (the job ClassAd) that lies outside their union. Hereewish to relocate the
point so that it lies within some hyper-rectangle.

In both cases we need a measure of distance between a poahgpdr-rectangle

so that we can make the smallest adjustment possible. A muhfaetors come into

14

play here: the number of predicates or attributes we haveaifyn how much we

have to modify a given predicate or attribute, how many mesgchill we get for a

given set of modifications, and what kind of machines will watoh with. A simple

algorithm would be to focus exclusively on the first factant there may be situa-
tions when several minor modifications are more attractiaa tone major one. A
more complex algorithm would give weights to different jobneachine attributes,
and in the case of attributes that take non-numerical vadleegify which values are
“closer” than others. This would require collecting a sabsial amount of informa-
tion from the user.

The distance metric we shall use lies somewhere betweemtipéesand complex
approaches. First, we calculate the distance in each dioressparately. For numer-
ical values the projection of the hyper-rectangle is anruatieor (infrequently) a set
of intervals. We begin by computing the absolute value ofifference between the
base point and the closest point in the interval. We therddithis difference by the
difference between the maximum and minimum values takeméyiven attribute.
For non-numerical values the projection of the hyper-megi@is a point (or set of
points) and the distance between two points is zero if theyeguivalent and one
otherwise. This definition assures that regardless of tgpe,dimensional distance
will always be between zero and one inclusive. Finally we siaenone dimensional
distances to get a composite distance. Taking the sum (sapgeknown as the
“taxicab norm”) is preferable to using the Euclidean nornitdavors modifying a

smaller number of predicates or attributes.

15

In thel Don’t Like Anyonecase, we can also detamnflictswithin the require-
ments expression, that is identify which predicates in alireqhents expression
clause are incompatible with one another. This situatiog arése out of user er-
ror, such as misspelling an attribute or a string value. rAlgely there may simply
be no machines that satisfy a certain combination of préescdf this is the case it

would be useful to identify the smallest subset of pred#tat cannot be satisfied.

3.1 |Don’t Like Anyone

First, we shall examine the case where no available machiaésh a submitted job’s
requirements expression. Depending on ones point of iie\pitoblem is either with
the requirements expression of the job, or with the attebutf the various machine
ClassAds that are referenced in the job’s requirements. l|AssBd analysis is pri-
marily concerned with aiding the user who has submitteddbene shall focus on
the job’s requirements expression. First we must indicdtehvpredicate or com-
bination of predicates in a given clause is causing the problOnce the offenders
have been identified we may use the machine ClassAds to symrgssble modifica-
tions to the expression. It may well be that the job requirgimare non-negotiable,
and may not be relaxed or modified. In this case the analyslligertinent as it
provides useful information about the current pool of aal# machines.

On the assumption that the job requirements expression maydudified, we
shall examine how to form useful suggestions to the userigwrdgard. Our goal

in this end is to find the least drastic modification to the egpron that results in a

16

successful match. In order to achieve this algorithmicakyneed a precise metric
for the degree to which an expression is modified. We shalthesenetric described
in the beginning of this section.

Additionally we need to define exactly what constitutes a ifincation to a pred-
icate. For our purposes we will allow either a modificatiorthe value part of a
predicate, or the complete removal of the predicate. If tiegligate has an equality
operator the value may be changed to anything as long as theasame type as
the original value. In the case of an inequality the valueusthonly be modified so
as to relax the predicate, as a stricter predicate will getawghere. If the operator
in question is a not-equals operator, the only sensible fication is to remove the
predicate altogether. Removal is also the best stratedneittribute is not defined
in any machine ClassAd.

As an example consider the following clause of a requiremexpression:

(other.Arch == "ALPHA") &&
(ot her. OpSys == "SOLARI S") &&
(ot her. Menmory >= 512M &&

(ot her.Di sk >= 14M

In this example there are only four machine attributes we about:Ar ch, QpSys,
Menory, andDi sk. From this clause we construct a table whose columns corre-
spond to attributes referenced in the predicates of theseland whose rows corre-

spond to the machine ClassAds. Continuing with our exanmgee is such a table:

17

Machine

ClassAd Arch OpSys Memory Disk
1 | “ALPHA’ “LINUX” 256M 10G
2 | “INTEL “LINUX” 256M 20G
3 | “SPARC” “SOLARIS” 1024M 10G
4 | “INTEL “LINUX” 512M 10G
5 | "ALPHA’ “LINUX” 512M 10G
6 | “SPARC” “SOLARIS" 1024M 20G
7 | “INTEL “LINUX” 256M 20G
8 | “SPARC” “SOLARIS” 256M 10G

Computing the distances for each attribute we get:

Machine Total
ClassAd | Arch OpSys Memory Disk| Distance
1 0 1 0.333 0 1.333
2 1 1 0.333 0 2.333
3 1 0 0 0 1
4 1 1 0 0 2
5 0 1 0 0 1
6 1 0 0 0 1
7 1 1 0.333 0 2.333
8 1 0 0.333 0 1.333

The rows in boldface are the machines with the shortest ceitgdistance to our
clause. We can now suggest that the user should either cljatdesr . Arch ==
"ALPHA") to (ot her. Arch == " SPARC") or changg ot her. QpSys ==
"SCLARI S") to (ot her. QpSys == "LINUX"). We give preference to the
former as it will net the most machines, and thus give the adeetter chance of

getting a successful match in the future.

18

3.1.1 Detecting Conflicts

Another way of looking at thé Don'’t Like Anyonesituation is to find predicates
that conflict with one another, that is, predicates that magdtisfied by machines
on their own, but are not satisfied in conjunction. In our egnwe have many
machines running Solaris and several machines with Alpbegssors, but no Alpha

machines running Solaris. In this case the expression

(ot her. OpSys == "SOLARI S") &&

(ot her.Arch == "ALPHA")

represents two conflicting predicates, each of which ewaltgtrue in the context
of some machine ClassAds, but in conjunction will alwaysgaste tofalse Alter-
nately, an expression may contain a conflict that will eviduafalse regardless of

the context it is evaluated in. An example of such a conflithésexpression

(other.Arch == "ALPHA") &&

(other.Arch == "I NTEL")

In this case we have two predicates that may be satisfied anothie, but together
they will never be satisfies as tlAe ch attribute can only have one value. In other
words, the first example happens to be false for a given setachimes while the
second example is logically inconsistent and thereforatisfsable.

Detecting the former kind of conflict requires the evaluatd the individual ex-
pressions in the context of machine ClassAds, whereas tiiee kind may be iden-

tified in isolation. To detect the latter we must separateptieeicates in a clause by

19

attribute reference. For each attribute referenced weerbtive predicates to points
or intervals depending on the type of the values. If the gdetion of these intervals
is empty (as is the case in our second example) we have igehéifconflict. The
remainder of this section is devoted to conflicts that areeddpnt on the values of
the machine attributes.

To better understand the problem of conflict detection itakpful to think of a
clause as set of predicates and to construct a subset |attibehe full clause on the
top and an empty clause (semantically equivalemrite) on the bottom. In Figure 3
we see a lattice representation of the sub-expressionseofléuse from our first

example where:

pris(ot her. Arch == "ALPHA")
pyis(ot her. QSys == "SOLARI S")
pzis(other. Menory >= 512M

pyis(other. D sk >= 14M

Each subset corresponds to sub expression of the clausetgghby removing cer-
tain predicates.

A given subsesucceed$marked with ar) if the corresponding expression eval-
uates tarue in the context of some machine ClassAd dails (marked with arf)
otherwise. Any set in the lattice that fails and has no fgilsubsets is a Minimal
Failing Sub-expression (MFS), enclosed by a dashed oval.sAhthat succeeds and
has no succeeding superset is a Maximal Succeeding Subssiqm (MSS), marked

by a solid oval. This terminology comes from work in databasery analysis [26].

20

The conflicts we are looking for are those that correspond E&d) that is expres-
sions that always evaluate false but whose sub-expressions evaluate to true in

some context.

F
{p1, p2, p3, p4}

Figure 3: A subset lattice representing sub-expressiomasotduse. The solid ovals
are MSSs and the dashed ovals are MFSs.

Godfrey [26] shows that in the general case finding all MF$&sHard, but pro-
poses a linear time algorithm for finding one MFS and a polyiabtime algorithm
for finding a fixed numbek of MFSs. However, these algorithms are measured in
terms of the number of database queries needed to produdeshred information.
If we have a table of evaluations (generatediin n time wherem is the length of
a clause ana is the number of contexts) of each of the predicates in théezoof
each of the machines we do not need to make a series of queneslaave all of the
information we need.

The table of evaluations for our example is the following:

21

Machine | (p1) Arch== (p2) OpSys == f3) Memory (p4) Disk
ClassAd “ALPHA’ “SOLARIS” >=512M >=14M

1 T F F T

2 F F F T

3 F T T T

4 F F T T

5 T F T T

6 F T T T

7 F F F T

8 F T F T

The columns of this table correspond to the predicates ircldngse and the rows
correspond to machine ClassAds as in the previous table.

To generate the set of all MFSs we must first generate the sditM5Ss. To get
the set of all MSSs we simply collect all of the unique rowshs Boolean table and
prune out any rows that do not correspond to MSSs. Using thef 8SSs we derive
a formula in DNF that is equivalent to the set of all succegdinb-expressions. We
then negate this formula to get a formula equivalent to dliinfg sub-expressions.
If we convert the negated formulas to DNF and prune out anicétly redundant
sub-formulas we have a formula that contains all of the MFE®sl (hothing but the
MFSs) as clauses.

Based on the entries in the Boolean table the set of sucaesdinexpressions

may be represented by the formula:

(=p2 A =p3)V (=p1 A —=p2 A =p3)V (—p1)V (=p1 A =p2)V (—p2)V (—p1)V

(mp1 A =p2 A —p3)V (—p1 A —p3)

pruning out redundancies we get:

22

(ﬁp1) N (_‘pz)

Its negation is:

(p1 A p2)

This result is already in DNF, and corresponds exactly toMR& we seek.

The main drawback to this process is that converting theteddgarmula from
CNF to DNF may result in an exponential blow up in the size efftrmula. This is
not a grave concern, as in practice these requirementssstpns are not very long,

at least with respect to the number of machine ClassAds.

3.2 Nobody Likes Me

The converse of theDon't Like Anyonesituation isNobody Likes Me Instead of
the job ClassAd requirements expression rejecting all mash all of the machine
ClassAd’s requirements expressions reject the job. Thexete must examine mul-
tiple expressions in DNF in the context of a single job Claks®ur focus is pro-
viding information for the user who submits the job, so we thosk at this in terms
of the attributes of the job ClassAd. Just as we sought toestggodifications to
the job requirements expression in the previous sectionstvel endeavor to find
potential modifications to the job ClassAd’s attributess kven possible that crucial
attributes may be missing from the job ClassAd entirely.

In the semantics of the ClassAd language a reference to aister@ attribute

evaluates taindefined For the purpose of matchmakingndefineds equivalent to

23

false Since we wish to distinguish between attributes that atedatined in a job
ClassAd and attributes with values that cause machine neagents expressions to
evaluate to false, this distinction is crucial.

The algorithm forl Don't Like Anyonein effect finds the closest point to the
hyper-rectangle and generates suggestions to expandgbe tgctangle to include it.
Now, given a single point, we wish to find the closest of seMgyper-rectangles. We
shall use this to suggest changes to the job attributes sthtéhpoint may be relocated
within the closest hyper-rectangle, and thus the job Cldssif{ be accepted by some
machine ClassAd’s requirements expression.

Figure 4 shows the geometric equivalent of two clauses wtlatese 1 is

(I mageSi ze >= 128M &&

(MenoryRequi renents >= 512M

and clause 2 is

(I mageSi ze >= 64M &&

(MenoryRequi rements >= 1024M

We can find the closest hyper-rectangles by applying thamlst algorithm dis-
cussed in the beginning of the section. This method is seffidor finding the near-
est point, or smallest overall change to the attributes énjobb ClassAd. However,
one might wish for more detailed information, such as how yrmaachines would
match with the job if the changes described above are madardbr to be concise

we should partition the space covered by the hyper-reatanglpresenting machine

24

requirements expressions into equivalence classes. Eatitign corresponds to a

range of job attribute values that satisfy the requiremefdsunique set of machines.

MemoryRequirements
1024M

512M

64M 128M

ImageSize

] Clause 1 Clause 2

Figure 4: A geometric representation of two clauses

The first step in this process is generating the hyper-rgt#an If a machine
requirements expression contains more than one clausegate@ separate hyper-
rectangle for each clause, as the union of all such hyp¢amgles represents the
space covered by the entire expression. Given a clause, wérezd each predicate
as an interval (or set of intervals) in the dimension coroesiing to its attribute.

An equals operator in the predicate defines a point, a naleqyperator defines
the union of two open intervals comprising all values exdeptthe value in the
predicate, and any other inequality operator defines an opelosed interval from

the value to positive or negative infinity. If there are mplii predicates with the

25

same attribute, we find the intersection of all of the interthey represent. If this
intersection is empty, we have found a logical conflict ascdbed in the previous
section. Since we are dealing with machine ClassAds, welgithpow out this
clause as it will never be satisfied.

The second step is partitioning along each dimension seghgréaking care to
keep track of which partition any given clause of a machimgirements expression

belongs to. For example, clausecl)(in Figure 4 contains the predicate
ot her. Menory >= 512M

and clause 24) contains the predicate

ot her. Menory >= 1024M

These clauses creates two intervdlst2, 1024) and[1024, +00) corresponding to
the setgc; } and{¢;, co}. We continue this process until all clauses in each machine
requirements expression are processed, then repeat tbesprior all dimensions.

If there is an attribute that is referenced in some clausésdiuothers we simply
represent that clause &soo, +00), the set of all strings, or the set of all Boolean
values depending on the inferred type of the attribute (deted by the first value
associated with that attribute).

One tricky aspect is dealing with a predicate like
ot her. Oamner !'= "ncol eman”.

If the type of the value were Boolean the solution would beidtj and we have

already defined how a not-equals operator is to behave amamgncal values.

26

In this case we invent a special string value called/OtherString If a clause of

a machine requirements expression contains such a predtbat clause is added
to every partition in theOmer dimension except the one corresponding to the
string " ncol eman™, as well a partition corresponding to AnyOtherString (i€ th
AnyOtherString partition does not exist we create one). &l see that it is impor-
tant to keep track of which strings are not represented byOthgrString in a given
dimension.

The third step is constructing the dimensional partitions by taking the cross
product of the vectors of intervals in each dimension. Giwgarval [64,128) in
thel mageSi ze dimension with clause sétl = {c,} and interval[1024, 4+-c0) in
the Menor yRequi r ement s dimension with clause sé2 = {¢;, co} we create a
rectangle defined bj4, 128) x [1024, +c0), and associate it with the intersection of
S1andS2, namely{c,}. What this means is that job ClassAds with attribute values
in the range defined bjg4, 128) x [1024, 4+-00) will match the machine corresponding
to c;. We continue the process with all intervals, and with all éivsions.

If we run into the AnyOtherString placeholder in a dimensigth string values,
we make note of all of the other string values we have encoeahia that dimension
and annotate any hyper-rectangle created using this oestarAnyOtherString with
these values. For example, if the dimension correspondse®@iner attribute
and the other string values dt@col eman" and"r aman", then AnyOtherString
means any value fabwner except' ncol eman” and" r aman™.

Finally we have a set of hyper-rectangles each associatedisubset of clauses

27

(and therefore a subset of machines) that partitions theespsle may need to clean
up this set by adjoining hyper-rectangles correspondindgntical sets of machines.
We can now not only find the closest range of values to thosarijob ClassAd,

we can specify how many and which machines will match withtaGéassAd with
attribute values in that range. In addition we can preseveraé alternative value
ranges, each with a distance defined at the beginning of ttteoseand a set of
matching machines. This extra information opens the daanfore complex policies
for determining suggestions based on distance as well apreferences for certain

machines.

28

Chapter 4

ClassAd Representation of

SPKI/SDSI Certificates

The ClassAd representation of SPKI/SDSI certificates idyfaimple. Each cer-
tificate ClassAd consists zero or marert request portand acert offer port A
cert offer port contains attributes corresponding to thpetghame or auth), issuer,
identifier (name certs only), and subject of the cert. Hubj ect attribute is a
literal value if the subject of the cert is directly specifiesing a public key, or an
attribute reference if the subject is indirectly specifisthg a SPKI/SDSI name with
one or more identifiers. In the indirect case the ClassAd edstains one or more
cert request ports, each of which requests a name cert (or cheerts) to resolve
the SPKI/SDSI name. If the ClassAd represents an auth cérttiae delegation bit
turned on, there is an additional cert request port requgstn additional auth cert

(or chain of certs) issued by the subject of the cert.

29

4.1 Transforming SPKI/SDSI Certificates to ClassAds

Given a name celt' = K A — S whereK is the key of the issueH is the identifier
being defined ink’s name space, anfl is the subject of the definition antl= K|
Ay A; ... A, we define the ClassAd Ad)) as shown in Figure 5. Note: § =
K, then there is only one port. Returning to our example cerisdare 2, Figure 6

shows the ClassAd for cert (2).

4.2 Compatibility and Composition

Given two certsC; and C5, we claim thatC; is compatible withCs if and only
if the offer port of Ad(C3) matches the first request port of Ad(). Note that the

Requi r enent s expression of the first request port of A4 is:

ot her. Type == "cert_offer" &&
ot her. Cert Type == "Nane" &&
ot her.lssuer == "K 2" &&
other.ldentifier == "A 2"

matching the offer port of Ad(,).

Given two chaingCh; and Ch, the Ad function can be extended as follows:
Ad(Ch; o Chy) is defined by filling the first open request port in the gangrabefi
by Ad(Ch,) with the gang defined by Ad{h,) assuming that the two chains are

compatible.

30

4.3 Name Resolution

Consider a name ceft = K A — S. We wish to assemble a chain of name certs to
resolve subject (rewrite it as a key). The corresponding concept in gangniadc
is marshaling a gang using Ad] as a root and evaluating the Subject attribute in the

offer port of Ad(C) to determine the key thét resolves to.

Lemma Given a chain of name certsh, the subject o’/ is equal to the value of

theSubj ect attribute of the offer port of Ad{h).

Proof: The proof is inductive.

Base CaseS = K|, s0S resolves to itself.
Ad(C) = Ad(K A — K,) is shown in Figure 7 Th&ubj ect attribute of the offer

port of Ad(C') evaluates to K,".

Induction: First we shall show that the existence of a chain implies thstence
of a gang. Then we shall show the reverse. In both cases weasshasn > 1

identifiers so:

S = K(] AO Al An—l

31

Chain — Gang: If there is a resolution for S then the following cert chaingsin

exist:

Chy = Ky Ag — K (the composition of all of the certs i)
Chl = Kl Al - KQ)

Chn—l = Kn—l An—l - Kn

so thatCh, =C o Chgo...o Ch,_1 = K A — K, for some not necessarily distinct
keySKl, o K,
Assume a gang can be marshaled for cert chains of lengdti:,,| and for 0< i

< n - 1 the offer port of Ad(C'h;) is as follows:

ot her = request;
Type = "cert_offer";
Cert Type = "Name";

| ssuer = "K_(1)";
Identifier = "A (1)";
Subj ect = "K_(i+1)";
Requi renents =

other. Type == "cert_request"”

32

The first request port of Ad), labeledchai n1 can be filled by the offer port of

Ad(Chy) since the request pdrRequi r ement s expression is:

ot her. Type == "cert_offer" &&
ot her. Cert Type == "Nanme" &&
ot her.lssuer == "K 0" &&
other.ldentifier == "A 0"

and the offer port of Ad('hy) is:

ot her = request;
Type = "cert_offer”;
Cert Type = "Nane";

| ssuer = "K 0";
Identifier = "A O"
Subj ect = "K_1";
Requi renents =

other. Type == "cert_request"”

The second request port of Ad), labeledchai n2 can be filled by the offer port

of Ad(Ch;) since the request paRequi r enent s expression is:

ot her. Type == "cert _offer" &&
ot her. Cert Type == "Nanme" &&
ot her. I ssuer = chainl. Subj ect &&

other.ldentifier == "A 1"

33

and chai nl. Subj ect is bound to theSubj ect attribute of the offer port of
Ad(Chy) with the value' K 1" . In the same way the request port labetddai n(7)
can be filled by Ad(C'h;). It follows that theSubj ect attribute of the offer port of
Ad(Ch,) is equal to theSubj ect attribute of the offer port of Ad('%,,_1) which

evaluates td K.n" .

Gang — Chain: If a gangG (which can be thought of as a structured set of Class-
Ads) can be marshaled to satisfy Ag(then a sub-gang satisfying each request port
of Ad(C) must exist. We shall refer to these sub-gang&as..,G,,_1.

Assume that a corresponding certificate chain exists fosabygang of size less

than|G| and for0 < i < n — 1 3 Ch,; such that the offer port af; = Ad(Ch;) is:

ot her = request;
Type = "cert_offer";
Cert Type = "Name";

| ssuer = "K_(1)";
Identifier = "A (5)";
Subj ect = "K_(i+1)";
Requi renents =

other. Type == "cert_request"”

34

Chi=K; Ai — Kin

for some identifierd;, and keysk; and K ;.

Since the offer port of7 satisfies the first request port of Adf C' is compatible
with Chqy. Similarly since the offer port of7; satisfies the first open request port of
Ad(C o Chg o ...o Ch;_1) the chainC' o Chg o ... o Ch;_4) is compatible withC'h;.

By induction we can build a chain:
Ch,=CoChyo..oCh, 1=K A— K,

Note that once again tieubj ect attribute of the offer port of Ad(,,) equals the

Subj ect attribute of the offer port of Ad('h,,_;) which evaluates td,,. [

4.4 Authorization and Delegation

Given an auth ced' = K [0 — S D whereK is the key of the issuef is the subject
of the authorization, and is the delegation bit/p = (1 if on andM if off) and S =

Ko Ag Aq ... A,,_1 we define Ad() to be the ClassAd in Figure 8.

35

If D is off, the last two ports are replaced by the following sengort:

ot her = request;

Type = "cert_offer";

Cert Type = "Auth";

| ssuer = "K";

Subj ect = chai n(n). Subj ect ;
Requirenments =

other. Type == "cert _request"

Note: if S = Ky and D is off then there is only one port with iSubj ect attribute
equal toK . Returning again to the rules in Figure 2, Figure 9 shows thesad for
cert(1) and Figure 10 shows the ClassAd for cert (3).

CertsC, = K; 00— 51 Dy, Cy = K3 Ay — S, are compatible ifS; = Ky Ay X
for some sequence of zero or more identifiers X. As@d(is identical to Ad(})
in Section 4.2 in all aspects relevant to the proof in thatiseave can conclude the
equivalence of compatibility with matching the first opequest port (not including

the final request port iD is on).

36

CertsCy, = K; O — S; Dy, C, = K, O — Sy D, are compatible ifS; = K,
and Dy is on. To show that this is equivalent to the offer port of &g matching
the first open request port of Ad() we note theRequi r enrent s expression of the

first request port of Ad(,) is:

ot her. Type == "cert _offer" &&
ot her. Cert Type == "Aut h" &&
ot her.lssuer == "K 2"

matching the offer port of Ad{,). The extended definition of composition follows
from the above.

We can now consider the equivalence of certificate chains auth certs. A
certificate chain that contains auth certs must begin witawth cert, as name certs
can only be composed with other name certs.d’et K [J — S D be an auth cert.
Our root ClassAd will be AdT). If D is off, all of the request ports of Ad() are
identical to that of a name cert with the same subject. Theedhe equivalence of a
cert chain beginning with auth ceft and a gang with Ad{) as its root was proved
in Section 4.3. IfD is on, we may also assume equivalence up to the filling of the
final port.

With all but the last request port filled we have an incompgetegG and a chain

Ch such that:

Ad(Ch) =G
S resolves tak,

Ch=KUO-— K,

37

If we wish to viewC'h as a complete gang we need only fill the final request port of
G with the seed ClassAd shown in Figure 11. This seed ClassAdhes the final
clause in theRequi r enent s expression of the final request port@f Note that
theSubj ect attribute of the offer port of Ad() is equal to thesubj ect attribute
of the offer port of AdC'h,,_1).Subject which evaluates 1@,,.
If we wish to use the delegation option we can comp@aeavith another auth cert

"= K'0— S D' aslong as’ = K,,. This is equivalent to filling the final request
port with Ad(C") as shown above. In this case tBebj ect attribute of the offer
port of Ad(C) is chai n(n). Subj ect which is equal to th&ubj ect attribute of
the offer port of Ad(")
ChoC'=KO— 50O (ormif D is off) At this point we may use the same proof
recursively as filling the request ports of Adj is equivalent to building a chain

from Ch o C".

4.5 Certificate Chain Gangmatching

In Section 4.4 we demonstrated how to use an auth cert as thef@ gang. If
we wish to used gangmatching to find a certificate chain yatgfa given autho-
rization, the root of the gang we wish to assemble must be #roaration request.
Specifically, the request is for the head of a certificaterchdiich must be an auth
cert issued by the principal granting the authorizationve@isuch a principal,
Figure 12 shows the request ClassAdg,.:.

Certificate chain discovery can now be described as a gaebmgtproblem.

38

We are given an authorization request represented by CiadgA,.;, and a set of
certificatesC = (4, ...,C,. LetC = {Ad; = Ad(C4), ... , Ad,, = Ad(C,,), Adk,, ...

, Adg,, } where Ad, is the seed ClassAd described in Section 4.4 for a given key
K;. The request is satisfied if a gang can be marshaled thdiestise constraints of
the request. A certificate chain authorizing the requesteaextrapolated from the
gang.

Now that we have defined a ClassAd representation for SPIQISrtificates
and shown that a valid gang of such ClassAds is equivalentvalid certificate
chain, we must describe a suitable algorithm for assemblamgs. As stated before,
a depth first search algorithm as described in [51] is ingafficbecause re-use of
ClassAds introduces the possibility an infinite number aigg There is also the
possibility that the algorithm may enter an infinite loop arad produce any gangs
at all. As an example, consider the SPKI/SDSI certificatel — K A A. Since
this certificate is compatible with itself, it can be appltedtself repeatedly without
K A ever being resolved. The ClassAd equivalent of this ceatiéienatches itself,
so a depth first search gangmatching algorithm would gekstua loop repeatedly
adding the same certificate to a gang.

The solution based on push down systems (PDS) describe®jrdgals with
these problems by generating a finite representation ofcd &&ind certificate chains
and ignoring new chains that are equivalent to chains in ¢he\8e can adapt this

approach to gangmatching by generalizing the notion ofv@dgmce to gangs.

39

Ports = {

[

ot her = chai ni;

Type = "cert_request";

Requi rements = other. Type == "cert_offer" &&
ot her. Cert Type == "Nane" && other.lssuer == "K 0" &&
other.ldentifier == "A 0"

1,
[

ot her = chai n2;

Type = "cert_request";

Requi rements = other.Type == "cert_offer" &&
ot her. Cert Type == "Nane" && ot her.|ssuer == chai nl. Subj ect
&% other.ldentifier == "A 1"

1.

ot her = chai n(n);

Type = "cert_request";

Requirenments = other. Type == "cert_offer" &&
ot her. Cert Type == "Nane" &&
ot her. I ssuer == chai n(n-1). Subj ect &&
other.ldentifier == "A (n-1)"

1
[

ot her = request;

Type = "cert_offer";

Cert Type = "Nanme";

| ssuer = "K";

Identifier = "A";

Subj ect = chai n(n). Subj ect ;

Requi rements = ot her. Type == "cert_request";

Figure 5: ClassAd for generic name cert

[

Ports = {

[

[

ot her = request;
Type = "cert_offer";
Cert Type = "Nane";
| ssuer = "K_A";
Identifier = "Bob";
Subj ect = "K_B";
Requirenments =
other. Type == "cert _request"

Figure 6: ClassAd for certificate (2)

Ports = {

[

ot her = request;
Type = "cert_offer"
Cert Type = "Nane";
| ssuer = "K";
Identifier = "A";
Subj ect = "K 0";
Requirements =
other. Type == "cert_request"

Figure 7: ClassAd equivalent to AR(A — Kj)

40

41

Ports = {

[

ot her = chai ni;

Type = "cert_request";

Requi rements = other. Type == "cert_offer" &&
ot her. Cert Type == "Nane" && other.I|ssuer == "K 0" &&
other.ldentifier == "A 0"

1,
[

ot her = chai n2;

Type = "cert_request";

Requirements = other. Type == "cert_offer" &&
ot her. Cert Type == "Nane" && ot her.|ssuer == chai nl. Subj ect
&& other.ldentifier == "A 1"

1.

ot her = chai n(n+1),

Type = "cert_request";
Requi rements = other.Type == "cert_offer" &&
ot her. Cert Type == "Auth" && other.|ssuer == chai n(n). Subj ect

1
[

ot her = request;
Type = "cert_offer";
Cert Type = "Aut h";

| ssuer = "K";
Subj ect = chai n(n+1). Subj ect;
Requirements = other. Type == "cert_request”

Figure 8: ClassAd for generic auth cert

[

Ports = {
[

ot her = chai nl;

Type = "cert_request";

Requirements =
other. Type == "cert_offer" &&
ot her. Cert Type == "Nanme" &&
other.lssuer == "K A" &&
ot her.ldentifier == "Bob";

]
[
ot her = chai n2;
Type = "cert_request";
Requirenments =
other. Type == "cert_offer" &&
ot her. Cert Type == "Auth" &&
ot her. I ssuer == chai nl. Subj ect
1.
[

ot her = request;
Type = "cert_offer";
Cert Type = "Aut h";
| ssuer = "X";
Subj ect = chai n2. Subj ect;
Requirenments =
other. Type == "cert_request"

Figure 9: The ClassAd for cert(1)

42

[

Ports = {

[

1,
[

ot her = chai nl;

Type = "cert_request";

Requirements =
other. Type == "cert_offer" &&
ot her. Cert Type == "Nane" &&
other.lssuer == "K B" &&
other.ldentifier == "Carol";

ot her = request;

Type = "cert_offer”;
Cert Type = "Aut h";
| ssuer = "K B";

Subj ect = chai nl. Subj ect;
Requirenments =

other. Type == "cert _request"
]
}
Figure 10: The ClassAd for cert (3)
Ports = {
[
ot her = request;
Type = "cert_offer";
Cert Type = "Auth";
| ssuer = "K (n)";
Subj ect = "K (n)";
Requirements =
ot her. Type == "cert_request";
]
}

Figure 11: A generic seed ClassAd

43

[

Ports = {

[

ot her = chain;

Requirenments =
chai n. Cert Type == "Auth" &&
chain.lssuer == "|";

Figure 12: The request ClassAldi ..

44

45

Chapter 5

Gangmatching: Structures, Concepts

and Algorithms

The gangmatching algorithm requires more formal defingiohthe concepts and
structures involved. In this chapter we will formally defithee static and dynamic
structures. Next, we formally define the concepts of eqaive, partial evaluation,
and validity. We then present the algorithm, along with fsoaf correctness and
a complexity analysis. Finally we describe problems theseairom gangmatching,
and propose solutions using ClassAd analysis techniques.

The primary structures involved in gangmatching @rassAdsports gangsand
gangsters A gangmatching ClassAd is made up of a set of ports, each aftwh
represents a request for another ClassAd. A port that hasesot matched is called
anopenport. A gang is a set of ClassAds that match one another's pdftall
ports are satisfied, the gangdsmplete A gangster is an intermediate structure
that represents an open port in an incomplete gang alongavg#t ofbindingsthat
assign values to attribute references and express depsesidetween other ports
and the gangster’s port. Ports, gangs, and gangsters wiktieed more formally in

Section 5.1

46

The key concepts used by the algorithm aqeiivalencepartial evaluationand
validity. Two gangsters are equivalent if they are structurally #raes but contain
attributes from different ClassAds. Partial evaluatiomsed for expressions in in-
complete gangs, where not all of the attribute referenced®aund to literal values.
These partially evaluated expressions must be satisfiethdinlgs generated by sub-
sequent matches in order for the resulting complete gang valid. We will define
equivalence, partial evaluation, and validity more prelgisn Section 5.2.

The gangmatching algorithm is based on the structures andepts outlined
above. The input to the algorithm is a root ClassB¢ with one port, and a set
of ClassAdsC. Beginning with the gangster composed of the single porCgf
the algorithm creates new gangsters by matching existinggiars to parent ports of
other ClassAds. Whenever a new gangster is created, a new afegular grammar
is generated. When the algorithm terminates, this gramreaemgtes all complete
valid gangs built fronC;, and the ClassAds i@. In order to avoid repeated work and,
more importantly, infinite loops, the algorithm tests if ngangsters are equivalent to
previously encountered gangsters. If an equivalent gangsfound, the algorithm
adds a new rule to the grammar, but does not attempt to magcheiw gangster.
Otherwise, the new gangster is tested against the parendipeach ClassAd it
for a potential match. If the match is conditionally validetconstraint formulas are
partially evaluated, and the resulting expression is phts¢he first new gangster
created by the match. Further matches must satisfy thigegjam in addition to the

appropriate constraint formulas. The algorithm is presg@ind explained in more

a7

detail in Section 5.3.

5.1 Gangmatching Structures

The input for the gangmatching algorithm consists of a set GdissAds.
Each ClassAd consists of an ordered list of portspdkt consists of a set ot-
tribute definitionsand aconstraint formula The attributes defined in a port are also
exported by the port to potential matches, and are refeaegexported attributes
The attributes referred to in the definitions and constrfaimhula of a portP may be
imported viaP or via a port preceding in the same ClassAd. These attributes are
referred to asmported attributesFor example in Figure 13, there are two ports: one
to request a workstation to run a simulation on, and one toesta license to use
the software needed to run the simulation. The attributenifiefins in the first port
define the exported attributdy pe andl mageSi ze. The constraint formula in the
first port is the attribute expression of tRequi r enent s attribute and contains
constraints on the imported attributégpe, Ar ch, QoSys andMenor y. We know
that these are imported attributes because they are intimecfoher . at t r . Note
also the reference to the exported attributeageSi ze in the constraint formula.
The second port is similar to the first, with a notable exaepthat it contains a ref-
erence to an attribut&léne) imported from the first port. We know that this attribute
is imported from the first port because it is in the foru. at t r wherecpu is the
label assigned to the port of the ClassAd that matches thebirs as indicated by

the definitionot her = cpu. ClassAds and ports make up the static structures used

48

in the gangmatching process and are defined formally in @ebtil.1.

[

Ports = {
[/1 request a workstation
other = cpu;
Type = "cpu_request”;
| mgeSi ze = 28M
Requirenments =

ot her. Type == "Machi ne" &&
ot her. Arch == "I NTEL" &&
ot her. OpSys == "LINUX" &&

ot her. Menory >= | mageSi ze
],
[/1 request a license
other = license;
Type = "license_request";
CPUNane = cpu. Nane;
Crd = "run_sinf;
Requirenments =
ot her. Type == "License" &&
ot her. App == Cnd

Figure 13: A gangmatching ClassAd for a job

The output for the gangmatching algorithm consists of a 6glags. A gang
represents a tree of ClassAds where each ClassAd is codrtedts parent or child
through one of its ports. The ClassAd at the root of the treefisrred to as the
root ClassAd ClassAds with more than one port that are not the root Cldssa
intermediate ClassAdand ClassAds with only one port that are not the rootleaé
ClassAds A port connecting a ClassAd' to one of its children is called ehild
port, and the port connecting to its parent is th@arent port Given two ClassAds

C andC’” where(C' is the parent of”’, the connection between the child port©@f

49

corresponding t@” and the parent port af’ is called anatch A gang iscomplete
if it contains a root ClassAd with no parent port and everys€fd in the gang has a
child for each of its child ports. If any ClassAd in a gang hasiamatched port the
gang isincomplete

The process for creating gangs involves building incongpgetngs from Class-
Ads and building complete gangs from incomplete gangs. tieroto prevent the
construction of infinitely large gangs, we need a way to iatiavhen an incomplete
gang is equivalent to a previously encountered incompletg gAn incomplete gang
can be thought of as a set of unmatchedmenports. An open port in an incomplete
gang also has a corresponding set of assignmerisdmgsof attributes imported
via matched ports in the gang to literal values. Conversalgh open port has a set
of imported attributes that other open ports contain refegs to. The set of bindings
between attributes from other ports and attributes in am quet, as distinguished
from the bindings of attributes to literal values, are reddrto adinks. We refer to
an open port together with a set of bindings and a set of lisksgangster Gangs
and gangsters make up the dynamic structures used in thengéetgng process and

are defined formally in Section 5.1.2.

5.1.1 Static Structures

Before we formally define what a port is, we must first definedtmans from which
a port is constructed. Attributes describe an advertis¢éarahare exported by a port

or imported via a port. An attribute definition consists ofaane and an expression.

50

For the purpose of this chapter we restrict attribute exgioes to attribute references
imported via other ports or literal values. Détdenote the set of all literal values,
the set of all exported attributeg the set of all imported attributes, and lét= 7 U
E U V. A set of attribute definitions is represented by a total fiomc) : £ — (Z U
V). We shall refer to this function asdefinition function

We now define a predicate logic for expressing constrain@tibutes. Lei5 =
{T, F, U, E} be a set of literal values in four valued ClassAd Booleandogdihe
Boolean operators, Vv, and— are well defined over values 1. An n-ary predicate
is a functionk : U™ — B. We defined as the set of all Boolean formulas over

predicates iriC and values ir3. Formally we defineb as follows:
o if be Bthenbe @
e if xis ann-ary predicate and € U" then (, u) € ¢
o if p,p € Dthenp AN, p V1, 7 € P

Henceforth, we shall refer to elementsdfs constraint formulas.

We can now formally define a poR as a 5-tuple £p, Ip, Jp, dp, ¢p) Where
Ep C £ is the set of all attributes exported B, I C 7 is the set of all attributes
imported viaP, Jp C 7 is the set of all attributes referencedrthat are imported via
other portsgp : Ep — (Jp U V) is a function representing the attribute definitions
in P, ¢p € ® is a constraint formula ovefp, Jp, andV representing the match
requirements ofP. A ClassAdC; = {Pg, ..., P:_,} is an ordered list of ports.

The cardinality ofC; is expressed a’;| and is equal to, the number of ports

51

in C;. An attribute namedmpAttr imported by portP]? is abbreviated mpAttr;l,
and an attribute nameBzpAttr exported by portP; is abbreviatedEprttr;l(e).
The superscript and subscript are omitted when the nameeoéttinibute and its
designation as imported or exported are unambiguous.

Let C, be the ClassAd in figure 18, consists of two portsi) and P.

Epo ={Type, ImageSize}
Ipo = {Type, Arch, OpSys, Memory, Name}
Jpo =@
opo ={T'ype — "cpu.request”, ImageSize — 28M
¢po = (T'ype =="Machi ne") A (Arch =="1NTEL") A

(OpSys =="LI NUX") A (Memory >= ImageSize)

Epo ={Type, CPUName, Cmd}
Ipo = {Type, App}
Jpo ={Name}
opo ={T'ype —"li cense.request”, CPUName — Name,
Cmdw—"runsim)}

¢po = (I'ype =="Li cense") A (App == C'md)

5.1.2 Dynamic Structures

Given a set/ C 7 of imported attributes we definelanding functionas a partial

function : I — V. A binding function is analogous in form to a definition fuioct,

52

but in the process of gangmatching, definitions are statiteviiindings are dynam-
ically created. A set of links is represented bypiading relation. C 7 x 7 that
associates one set of imported attributes with another.

A gangstelG is an intermediate structure in the gangmatching processepre-
sents an open port in an incomplete gang. We defie a triple @, 3, L) whereP
=(F,1,J,9,¢)isaport,;:J— Visabinding function and C 7 x [is a binding
relation. 5 binds the attributes imported via prior ports and referdnne” to literal
values.L associates imported attributes from elsewhere in a garigattiibutes im-
ported viaP on which they depend. The sex=J \ {i | (i, v) € 3 for somev €
V} represents the dependenciessof(is independent i) is empty, otherwisé;
is dependent.

Returning to the example ClassAd in Figure 13,dktbe the gangster foP?,

andG, be the gangster faP?).
Go = (1, 2,2), Iy = (E¢, I, 2, &, ()
G, = (P2, 9), P = (E?, I?, {Nameg}, 5%, ¢9)

Note thatG, is independent sincd is empty, butG, is dependent sincd? is
nonempty, saD = J? \ @ = {Namej}. If we find a match forG, that defines

the attributeNane, we can create a new gangstey from G:
Gy =(P, {Name) — " paneer. cs. wi sc. edu" })

Now that we have a binding faWame] in 3¢,, G» is independent.

[

Ports = {

}
]

[
other = cpuil;
Type = "cpu_request"”;
Requirenments =
ot her. Type == "Machi ne" &&
ot her. | sDedi cat ed;
1.
[
other = cpu2;
Type = "cpu_request";
Requirements =
ot her. Type == "Machi ne" &&
ot her. | sDedi cated &&
ot her. Host == cpul. Host
],
[
ot her = request;
Type "Machi ne";
Arch cpul. Arch;
OpSys = cpul. Opsys;
Menory = cpul. Menory;
Name = cpul. Nane;
Requi rements = ot her. Type ==

]

53

"cpu_request”

Figure 14: A gangmatching ClassAd for a multi-processor

Let C; be the ClassAd in Figure 14. Suppose that we have matchedagshpdit

of Cy (PY) with the third port ofC; (P)). This means that the imported attribute

cpu. Nanme (Name)) in Cj is bound to the exported attriburéame;(e) in C4, that

in turn is bound to the imported attributgul. Name (Name}). When we create

the gangste; for the first open port of the gang created whignis matched with

(1 it must contain this binding in its binding relation:

54

G3 = (P}, 2, {(Namel, Name})})

This way, whenG; is matched andVame is bound to a literal valueVame) can
also be bound to that value.

A match M is a pair (&, P) whereG = (Pg, Ba, Lg) is an independent gangster
andP = (Ep, Ip, Jp, dp, ¢p) is a port. A match defines two binding functiofis_.
: Ip, — Ep andfBp_¢ : Ip — Ep, that bind the imported attributes iR, to the
attributes of the same name exported®ynd the imported attributes iR to the
attributes of the same name exportediyrespectively.

A gangl' = (Cy,---,C,,_1) is an ordered list of ClassAds. This list represents
a tree of ClassAds where the parent port of each non-roos&thss matched with
the first open child port of the gang constructed from the guiewy ClassAds. We
define the size of" as the number of ClassAds)(I' is complete iffzg‘:‘o1 |C;| =
2(n — 1), i.e. the total number of ports in the gang is twice the totahber of non-
root ClassAdsI'y = (Cy, C1) is not complete since it contains five ports and only one

match.

5.2 Gangmatching Concepts

The principal concepts needed for the gangmatching algorand gangmatching
analysis are analogous to similar concepts used in the lamdldulus. Every gang-
ster has aignaturethat can be derived by applying the bindings to the occugenc

of imported attributes in the port’s attribute definitiomslaconstraint formula. Two

55

gangsters arequivalenif they have identical signatures. The function used togran
late one gangster to an equivalent gangster is analogoysha eduction of lambda
expressions. We defined a match in Section 5.1.2 as a paifiaggangsteiG in

an incomplete gang with the parent péttof a ClassAdC. A match isvalid if G
satisfiesP’s constraint formula and satisfies the constraint formula Gfs port. A
gang is valid if all of its matches are valid. It may be the ctss the constraint
formulas contain imported attribute references that aleusbound. We call such a
matchconditionally valid This scenario can be dealt with by partially evaluating the
constraint formulas, and using the bindings created byespent matches to satisfy
the resulting formula. This use of partial evaluation cepands to beta reduction of

lambda expressions.

5.2.1 Equivalence

A signatureS is a 6-tuple €, I, J, 6, L, ¢) whereE C £ is a set of exported
attributes,/ and.J C 7 are sets of imported attributes; £ — J U V is a definition
function, ¢ is a constraint formula over elements ofJ andV, andL C 7 x [is
a binding relation. Lety be the set of all possible gangsters @hbe the set of all
possible signatures. We define a functtonGg — S as follows. Given a gangstéf
= (P, Ba, La) € G, X(G) = (Ep,, Ip;, 9, La, ¢) whered = 0p, o B andg = ¢p,, o

5PG o Ba.

Returning to our example:

3(Go) = Epo, Ipo,
{(T'ype, " cpu_request "), (ImageSize, 28M},
4,
(Type, ==" Machi ne") A (Arch (=="1 NTEL") A

(OpSys (=="LI NUX") A (Memory (== 28M)

X(Gh) = EP{” [Plo’
{(Type," i cense request"), (CPUName, Name),
(Cmd," run_si m")},
4,

(Type =="Machi ne") A (App=="runsi ni")

N(Ga) = (Epp, Ipo,
{(T'ype," i cense_request "), (CPUName, " paneer.cs. W SC
(Cmd, " run_si m')},
a,

(T'ype =="Machi ne") A (App =="run_si m"))

3(Gs) = (EPOM Ipy,
{(T'ype, " cpu_request ")},
{(Name), Name)},

Type =="Machi ne") A IsDedicated)

56

.edu"),

57

Two gangsters? andG’ are equivalent@ = G&’) iff S = X(G), S’ = X(G') and

there exists a bijection : Fs U Is U Jg — Eg U Is U Jg such that:

e for eachattr € Eg a(attr) = attr’ € Eg for someP’

for eachattr € Ig a(attr) = attr’ € Is for someP’

for eachattr € Jg a(attr) = attr’ € Jg for someP’

53 o= 53/ andésl e} O[_l = 55’

b5 0 a=¢pg andbs o !t = ¢g

Lsoa=Lg andLS/ oa~l= Lg

5.2.2 Partial Evaluation and Validity
We define the partial evaluation functiéh: & — & as follows:
e if b€ B, thenB(b) =b.

e if xisann-ary predicatey € U™ thenB(k, @) = (k, u) if k(@) =U (the ClassAd

boolean valueindef i ned), otherwiseB(k, i) = k().
e if € ® andB(¢) € B thenB(—, ¢) = — B(¢), otherwiseB(—, ¢) = (—, ¢).

e if op € {V, A} and¢,) € ® thenB(¢ op ¢) = the value ofB(¢) op B(v) if
both B(¢) and B() are inB or one of them is i3 and applyingop results

in the same value regardless of the value of the other. Otbe\(¢ op 1)) =

B(¢) op B(y).

58

Given match\M/ = (G, P), letvy,, =

B((¢p; 0 0p; © Ba o fg—p o dp) A (¢p o dp o fp_godp; o Ba))

If 5, =T, thenM isvalid. If ¢, € {F, U,E} thenM isinvalid. If ¢,; ¢ B thenM
is conditionally valid i.e. a binding functioms must be supplied such thB(yy; o 5)
=T in order for M to be a valid match. We can constrytfrom binding functions
created by other matches. Assuming we have a satisfagiahe binding function
created byM is By = Bg—p o 0p o 3.

For example, lef\/; be the match@,, P,):

Ymy = B((¢Pg © 5Pg o g, © 6G0—>P21 © 5P21) N (¢P21 © ﬂp21_>(;0 © 5Pg ° B6,))

= B((T'ypeg ==" Machi ne") A
(Archd =="1NTEL") A (OpSys) =="LI NUX") A
(Memory) == I'mageSizel)
© 0po © Bay © Bay—pp © 0pp) A

((T'ype; =="cpu._request") o Bp_g o dp, © Bc))

= B((T'ypeg ==" Machi ne") A
(Archd =="1NTEL") A (OpSys) =="LI NUX") A
(Memory) == 28M)
° By © Bay—pp ©0pp) A

((Typel,, == " cpu_r equest ") o 5z o o))

59

= B(((T'ypeg == " Machi ne") A
(Archd =="1NTEL") A (OpSys) =="LI NUX") A
(Memory) == 28M)
° Bay—pp ©0p1) A

((n cpu.r equest "==" cpu.r equest ") o ﬁG))

= B(((Typeé(e) =="Machi ne") A (Arché(e) =="1 NTEL") A

(OpSysé(e) =="LI NUX") A (Memory%(e) ==28M)

("cpu_request"” =="cpu_request"))
= B(("Machi ne" =="Machi ne") A

(Archy =="1NTEL") A (OpSys} =="LI NUX") A

(Memory}, ==28M A (" cpu_request " =="cpu_request "))
= (Arch{ =="1 NTEL") A (OpSysy =="LI NUX") A

(Memory, == 28M

Note thatyy,, is a constraint formula over attributes imported ¥ so M, is
conditionally valid.
A gangl' = (Cy, ..., C,_1) is valid iff the order ofC;'s defines a breadth first

ordering of a tree of ClassAds where each cliildof C; corresponds a pof in C;

60

(P is called a child port of’;) and there is one pof®’ in eachC; corresponding to

P (P'is called the parent port @f;) and for each\/ = (G, P) used to construct the
gang:

e P isthe parent port of’;
e P is achild port of the parent ClassAd 6f

e M is valid orM is conditionally valid and fo = U {3, | C; is a child ofC; }

B(yn o f) = T, whereM' is the match between a child port©f with C;.

5.3 Gangmatching Algorithm

The gangmatching algorithm builds individual gangs in adon (root to leaves)
fashion. The premise of the algorithm is that if an infinitenher of gangs can be
composed from a finite set of ClassAds, then there must beeatieg pattern —
in the same way that a finite automaton can define an infinitedgutlar language.
These repetitions can be prevented by detecting new gasdhte are equivalent
to previously encountered gangsters. Thus, we can asseniiniée grammar that
may produce an infinite number of gangs. In addition, thipiadigm makes use of
the partial evaluation facility described in Section 5.&2build gangs that satisfy
conditionally valid matches.
The algorithm takes as input a $eof ClassAds, and a root ClassA&d. Without

loss of generality we will assumg, has only one port. We also assume that each

ClassAdC € C U {C,} satisfies the following properties:

61

e The requirements expressigp of each portP of C' consists of a conjunction
of binary or unary predicates over attributes importedid), attributes im-
ported via previous ports i (Jp) and literal values¥) in which no predicate
contains attributes imported from more than one previousipd@’ and every

predicate contains at least one attribute importedfzia
e The last portinC' is the parent port of’, and all other ports are child ports.

e (' has no more than 2 child ports.
The primary data structures in the algorithm are:

e SEFEN - aset of previously encountered gangsters indexed bytsigna
e ALT - aset of equivalence classes of gangsters indexed by signat
e RULES -asetof rules for a regular grammar that generates all iplesgangs

e NEXT - a mapping from gangsters to gangsters to assure that therga

generates each gang in the correct order

In order to facilitate the handling of conditionally validatches we will add an ad-
ditional component); to each gang-. The purpose of); will become clear as we
discuss the algorithm.

The GANGMATCH method shown in Figure 15 adds a gangster created from the
single port ofC'y. The algorithm then enters a loop in which gangsters are vetho
and added to a list of gangs using th&@ BGANGSTER and REMOVEGANGSTER

methods. At the beginning of each loop, an independent ganigsaadded t& EFEN

62

GANGMATCH(Cy, C)
1 P« Cy’sport
2 G < ADDGANGSTERP,2,2,T)

3 RULES «— {(G — ()}

4 while G +— REMOVEGANGSTER)

5 if SEEN[X(G)]

6 ALT[X(GQ)] «— ALT[X(G)] U {G}

7 for each ¢/ — G” C") € RULES whereG" =G
8 RULES «— RULES U (G' — G (")

9 elseSEEN[X(G)] « true

10 for eachC € C

11 1 «— MATCH(G, C)

12 if » ¢ {F,UE}

13 GENERATENEWGANGSTERYG, C, ¥)

MATCH(G, C)

P «— (s parent port

dq < 0p; © Ba

b« (Pps © Ba) N Ya

Y «— B((¢c o Bg—p 0 dp) N\ (¢p o Bpr—c 0 dc))
return

a b wnN ek

Figure 15: The GNGMATCH algorithm

if there is no equivalent gangster alreadybifl E N or added to the appropriate equiv-
alence class ill LT otherwise. IfG is not equivalent to a gangster f¥ EN, the
parent portP of each ClassAd’ € C is tested to see if it match&s. The MATCH
method takeg7 and P as input and returns an element Bffor valid or invalid
matches or a constraint formujafor conditionally valid matches. If the matail

= (G, P) is valid or conditionally valid the method EBlERATENEWGANGSTERSIS
called. When the GNGMATCH method has complete®U L E'S will produce a set
of matches representing all complete valid gangs rootéd.aEach gang is a list of

ClassAds in order of appearance in the gang, with the pahiop each ClassAd

63

matching the first open port of the gang made up of the previddassAds.

GENERATENEWGANGSTERYG, C,)
1 P« (C"sparentportL,, «— &,
2 for eachattr)— Y €dp
3 if (X, attr) € Lg
4 LN[HLMU{(X,Y)}

5 L]\/[— LM U {(CLtt’f’, Y)}

6 Giast < null

7 for each child portP’ of C

8 L—{(X,Y)eLy|Y €lp}

9 Y’ — A {predicates in) containing an € Ip/}

10 Grew <— ADDGANGSTERP', @, L, ')

11 if Gase =null

12 RULES «— RULES U {(Gpeww — G C)}

13 elseNEXT[Gast] < Grew

14 Glast — Gnew

15 G'+— NEXT[G]

16 if G' # null

17 f—{(X,Y)eLy|XecJp,YeEV}

18 Grew — ADDGANGSTEF(P(;/, 0B, L¢y, 2/)(;/)

19 if Giase = null

20 RULES «— RULES U {(Gpew — G C)}

21 elseNEXT[Gast] < Grew

22 NEXT[Gpew] — NEXT[G']

23 elsif Giqse # null

24 NEXT[Gi4s] < null

25 elseRULES «— RULES U{(S — G C)}

Figure 16: The GNERATENEWGANGSTERSmMethod

The GENERATENEWGANGSTERSmMethod shown in Figure 16 creates new gang-
sters from the child ports of a ClassAdwhose parent por® has just been matched
with gangstelG. It keeps track of the correct order of gangsters usingteX 7’
mapping. It then creates a new gangster fr§d X T[], and the bindings created

by matchingG with P. If this method produces no new gangsters, then a gang has

64

been completed and'(— G C) is added taRULES.

The first part of the GNERATENEWGANGSTERSmMethod uses the binding rela-
tion Lq, the binding functionjs_. p, and the definition function, to construct new
bindings. Recall thaL; C 7 x Ip, binds attributes imported via other ports in an
incomplete gang to the attributes imported Y@, Sc_.p : Ip, — Ep binds each
attribute imported viaP; to an attribute of the same name exportedibyanddp:
Ep — (V U Jp) defines each attribute exported Byas a literal value or an attribute
imported from port preceding in the same ClassAd)). If we composei._. p with
dp we get a new binding functiofiy, : Ip, — (V U Jp). Furthermore we can apply
(G to the bindings inLs to get an additional set of bindinds,;, C Z x (V U Jp).
The setG,; U L), contains all of the bindings that ensue from matchihgvith P.
Let 3= (Ba U Ly) N (T x V), andL = (By; U Las) N (T x Jp).

The second part of the BIERATENEWGANGSTERS method creates new gang-
sters from ports i’ and bindings in.,,;. Given a portP’ € (', the bindings relation
L =1Ly N(Z x Jp) can be used to create a new gangéigr, = (P', &, L, ¢').

The third part of the GNERATENEWGANGSTERS method creates a new gang-
ster by applying bindings i to NEXT[G]. Given a gangste’ = NEXT[G],
the bindings in3 N (Jp: x V) can be used to create a binding function for the new
gangstelG,,c, = (Par, Ba U B, Loy, Yar).

To demonstrate this algorithm we return to the ClassAd sspration of
SPKI/SDSI certificates discussed in Chapter 4. Given tHeviahg certificates ex-

pressed as rewrite rules:

65

(1) X O — K, BobO

(2) K4Bob— Kp

(3) Ky — Kp Carolll

(4) K Carol— K¢
the ClassAd representations of these certificatgs-(-, Cy) are shown in Figures 17
and 18. The ClassAd}p) representing a request for authorization for princifial
to access resourck is shown in Figure 19. The following table shows an example

run of the gangmatching algorithm.

Match | Gangsters Rules
GQZ(PO,Q,Q,T) G0—>C()
(GO,Cl) G1:(P01,®,®, T) G1—>GQ Cl

Gy = (P}, @, {(Subject), Subject})},

(Subject; =="K.C"))

(Gl, CQ) Gg = (Pl, {(Subject(l), "K.B")}, Gg — G1 CQ
{(Subjecty, Subject})},

(Subject; =="K.C"))

(G3, C3) | Gy =(P3, 2, {(Subject), Subjectd)}, | Gy — G3 Cs
(Subjecty =="K.C"))

(G4, C4) S — G4 C4

The gang generated by the grammaids, (', Cs, C3, Cy).

66

5.3.1 Correctness

Termination: As defined in Section 5.1.1 an attribute expression in a @ortither

be an attribute reference or a literal value. Thereforeptiesible attribute values in

a port are limited to the literal values in. Therefore there are finitely many vari-
ations of a given port of a given ClassAd. Since there areefininany ClassAds,
there are finitely many gangsters that can be addefiH&' N. If a gangster has
an equivalent gangster inF E'N it is skipped and no new gangsters are generated
during that iteration of the while loop. Since the only gaegs that are considered
are gangsters that have no equivalerf if&’ N and there are only finitely many pos-

sible gangs that can be addedtd £ N, the while loop must eventually terminate.

Soundness:Every gang output by the algorithm is a collection of valid ¢ondi-
tionally valid) matches between a valid gangster and a paren of a constituent
ClassAd. In the case of a conditionally valid match betweegaagsterG' and a
ClassAdC with parent portP, parts of the resulting formula are attached to gang-
sters, based on which imported attributes occups.ihine 9 of the GENERATENEW-
GANGSTERS method in Figure 16 shows that predicatesjimre parceled out to a
port P’ if they contain an attribute ifi>.. In order for the algorithm to be correct, the
only imported attributes occurring ih must be elements ofp C U {Ip. | P'is a
child port of C'}, the attributes referenced i imported from prior ports irC'. We
shall prove this inductively.

The formulay is generated from three sourcess., ¢p, andy;. We can assume

67

that ¢/ either contains no imported attributes (the base case)abr/ihh contains
only elements of », (which serves as the inductive hypothesis). Applying thécha
function 8o_ p t0 ¢ takes all elements adfp, to the corresponding elements 65.
The definition function of?, §p, takes all elements df» to elements of/p or literal
values iny.

The constraint formul@p,, is defined ovelEp,, Ip,, and.Jp,. Applying dp,,
the definition function ofP;, takes all elements df'p, to elements of 5, or literal
values inV. Further applying3g, the binding function of~, takes all elements of
Jp to literal values inV. Applying the match functiom._, » takes all elements of
Ip, to the corresponding elementsiip. Finally, applying the definition functiofy
takes all elements df» to elements of/» or literal values inV.

The constraint formula@p is defined overEp, Ip, andJp. Applying dp takes
elements oft'p to elements of/p or literal values inV. The match functiobp_
takes all elements dfp to the corresponding elementsiip,. The definition func-
tion ¢ o, takes these elements bf,, to elements of/p, or literal values inV. Finally
the binding functiornj. takes all elements ofp,, to literal values inV.

Once the correct parts of are attached to gangsters, any match between those
gangsters and other ClassAds must also satisty pass along new formulas to new
gangsters. The passing of formulas can not last indefinisatge the last ClassAd
added to complete a can must not have any child ports and tbesmot have any
dependencies (i.e/p = @). Since all matches in a complete gang are either valid

or conditionally valid with their conditions satisfied, andly complete gangs are

68

output, all gangs output are validl

Completeness:To prove completeness we must first show tNadt X 7" always con-

tains the correct values.

Lemma For any gangstelG, NEXT[G] is equal to the gangster representing the

next open port, onull if there is no next open port.

Proof: The proof is inductive.

Base Caseilet (G, be the first gang created in line 2 of theskEGMATCH method
in Figure 15. AsG|, represents the only port in the gang consisting of ClasSid

NEXT[Gyp]isnull.

Induction: We assume that at the beginning of theNERATENEWGANGSTERS
method in Figure 16V EXT has the correct values for all existing gangsters. If the
ClassAdC' has no child ports, then at line 15,,; is null. This means that lines 21
and 23 will not be executed, and no changes will be mad€ X 7". If C has one
child port, thenGG,,.; will be set to the gangster created from the child port in line
14. We shall refer to this gangster @s. If C has two child ports, then during the
second iteration of théor loop beginning at line 7VEXT[G1] will be set to the

gangster created from the second child port, design@teeh line 13. Line 14 then

69

setsG,..: 10 Go. In either casés,,; is set to the last new gangster created. In line
15 G’ is set toN EXT[(G], by assumption the gangster representing the next open
port in the gang after the one represented’byif G’ is null then NEXT[G] iS
correctly set to null in line 24. Otherwis¥ EXT[G,,.] is correctly set to the new
gangster created froi¥’, designated-s, in line 21. In line 22N EXT[G5] is then

set toN EXT[G'] insuring that the next open port after the port represebted’

remains the next open port whéhy is created]

A complete gang' is a sequence of ClassAdg, - - -, C,, where the parent port of
each ClassAd’; (wherei # 0) matches with the first open port of the gang comprised
of the ClassAds prior t@’;. We need to prove that for each valid ganghere is a
sequence of rules iRU L E S that generates the corresponding sequence of ClassAds.
Let G; be the gangster representing the first open port of the gamgirewted from
Co, -+, C; (wherei: < n). We need to show thaty, — Cy, G,1 — G; C;4q for
each O< ¢ < n,andS — G,_; C, are all present ilRULES The first part is
clear from line 3 of the GNGMATCH method in Figure 15. In line 8 for any rule
containing a gangster equivalentd@oin the right hand side a new rule is added with
G substituted for the equivalent gangster. The remainingsrare generated in the
GENERATENEWGANGSTERSMethod in Figure 16.

Assume GENERATENEWGANGSTERSIS called onG; andC; ;. If C;,; has one
or more child ports, then the first child port is representgd bew gangstef,,.., in

line 10. In line 12 a the rul&/,,.., — G; C;,1 is added taRULES. G, represents

70

the first open port in the gang constructed fréfy - - -, Ci11, SOGrew = Giygq. |If
C;.1 has no child ports the@',,.; is null at line 15. By the above Lemmé; is set
to the next open port after the port represented-byN EXT[G;]) in line 15. If G’

is notnull then a new gangsté?,,., is created fronG’ in line 18 and the rul&7,,..,

— G; Cy1 is added taRU LES in line 20. Sinces,,.,, represents the first open port
in the gang constructed frof, - - -, Cii1, Gpew = Gig1. If G"is null then we have
generated a complete gang. This is reflected in line 25 whereuleS — G; C; 11

is added to rules. The only way this is possible i5#fn — 1. [J

5.3.2 Complexity

The complexity of the algorithm may be described in termshef following vari-

ables:
e cisthe number of ClassAds i@.
e v is the maximum number of possible unique values for a giviibate.

e j is the maximum number of attributes imported from prior pddependen-

cies) in all ports of all ClassAds i@

The number of possible unique gangsters is equal to the nuofiperts, which
is O(c), times the number of combinations of values for each posjsetidencies,
which is O(v?). If there areO(cv?) possible unique gangsters, then lines 11-13 of
the GANGMATCH method in Figure 15 are executét{c*v’) times. The MATCH

method in Figure 15 and theEBERATENEWGANGSTERSmMethod in Figure 16 are

71

each constant time if we assume that the number of attriliétsed in each port

is a constant. This means that there @fe*v”) total gangsters generated, so lines
5 and 6 of QNGMATCH are executed)(c*v’) times. For each unique gangster
G, only one rule withG on the left hand side is added U LES, so line 8 is
also executed)(c*v’) times. Therefore the time complexity of the gangmatching
algorithm isO(c*v?). The space complexity is alg9(c*v?) since SEEN, ALT,
RULES, andN EXT are all bounded by the total number of gangsters.

The complexity of the certificate chain discovery algorithm [12, 29] is ex-
pressed in terms dt’|, the sum of the lengths of the right hand sides of all rules
corresponding to certs i, andn g, the number of unique public keys occurring in
C. In the ClassAd representation of SPKI/SDSI certificatescdeed in Chapter 4
isO(|C]), vis O(ny), andj = 1. Given these ClassAds, the algorithm has a time and
space complexity of)(ng|C|?), the same worst case time complexity as plost*

algorithm for certificate chain discovery presented in [29]

[/] certificate (1)
Ports = {
[
ot her = chai nl;
Type = "cert_request";

Requi rements = other. Type == "cert_offer"

ot her. Cert Type == "Nane" &&

ot her.lssuer == "K A" &&
other.ldentifier == "Bob"
1,
[

ot her = chai n2;
Type = "cert_request";

Requi renments = other. Type == "cert_offer"

other. Cert Type == "Auth" &&
ot her. | ssuer == chai nl. Subj ect

]

[
ot her = request;
Type = "cert_offer";
Cert Type = "Auth";
| ssuer = "X";
Subj ect = chai n2. Subj ect;
Requi rements = ot her. Type ==

]

}
]

[/] certificate (2)
Ports = {
[
ot her = request;
Type = "cert_offer";
Cert Type = "Nane";
I ssuer = "K_A";
Identifier = "Bob"
Subj ect = "K_B";
Requi rements = ot her. Type ==

"cert_request”

"cert_request”

72

Figure 17: Gangmatching ClassAds for the SPKI/SDSI ceatiéis (1) and (2)

[// certificate (3)
Ports = {
[
ot her = chai nl;
Type = "cert_request";
Requirenments = other. Type == "cert_offer" &&
ot her. Cert Type == "Nane" &&
ot her.lssuer == "K B" &&
other.ldentifier == "Carol"
],
[
ot her = request;
Type = "cert_offer";
Cert Type = "Aut h";

| ssuer = "K B";
Subj ect = chai nl. Subj ect;
Requirenments = other. Type == "cert_request”

]
}
]

[/] certificate (4)

Ports = {
[
ot her = request;
Type = "cert_offer";
Cert Type = "Nane";
| ssuer = "K_B";

Identifier = "Carol";
Subject = "K C'
Requi rements = ot her. Type == "cert_request”

Figure 18: Gangmatching ClassAds for SPKI/SDSI certife48) and (4)

74

[

Ports = {
[

ot her = chai n;

Type = "cert_request";

Requirenments = chain. Type == "cert_offer" &&
chai n. Cert Type == "Aut h" &&
chai n. I ssuer == "X" &&
chai n. Subj ect == "K C

Figure 19: Gangmatching ClassAd for a SPKI/SDSI authaonaequest for access
to resourceX by principal K¢

75

Chapter 6

Gangmatching Analysis

Gangmatching analysis is essentially an extension ofgsdatnatching analysis. Be-
tween any two given ports, the same techniques can be usexteorine why the
first port does not match the second and vice versa. Howdwepresence of prior
ports in a ClassAd introduces the possibility that one mately be dependent on
the results of other matches. In addition, new probleme drism the more complex
structure of a gang as opposed to two matching ClassAds.

A common problem in authorization systems is how to revokerejpal’s access
to a resource. For example, in SPKI/SDSI a principal may laaeess to a resource
via several different certificate chains containing ceifes issued by several dif-
ferent principals. In order to revoke the principal’s accesthe resource, at least
one certificate in each such chain must be revoked. To avaidagssary disruption
caused by certificate revocation, the set of certificateskey should be minimal.

For example, given the following set of SPKI/SDSI certifesat

76

(1) X O — K, BobO
(2) X O — K¢ BobO
(3) K4 Bob— K, Bob
(4) Ko Bob— Kp Bob
(5) Kp Bob— Kp
(6) K4 Bob— Kp
the request to authorize princip&lsz (Bob) to authorize resourcE can be satisfied

by three different chains corresponding to three diffeserisets of certificates:

DE)G)
(1)(6)
(2)(4)(5)

An example of a minimal cut would be the removal of certs (1J é4). Note that
removing (1) or (5) affects two chains. One can not removertficate from one
chain without removing it from another.

The Break the Chainproblem may be abstracted to the problem of finding a
minimal element in a subset lattice that passes a givenlteftis case the top set in
the lattice is the set of all certificatesd@ The test on a give@” C C'is whether the
certificates inC’ grant the principal access to the resource. The problemdihfyrall
such minimal elements has been shown to be NP-hard [26héproblem of finding
one such element is linear. Furthermore, findinguch elements for a constants
polynomial: fork > 1 the complexity igD(n*~1). In Section 6.1 we will apply this

abstraction, then improve the performance by optimizingethuce repeated work.

77

TheMissing Linkproblem is the opposite of the Break the Chain problem. I thi
case a principal has no access to a resource, but may havengteai a certificate
chain that would grant access. The problem is to find whictifioates are needed
to complete a chain that will authorize the principal to ascthe resource.

For example, given the following set of SPKI/SDSI certifesat

(1) X O — K4 Admin O

(2) Kp Carol— K¢
the request to authorize principéls (Carol) to authorize resourc& can not be
satisfied by any subset of certificates. An example of a aatdi whose addition
would satisfy the request for authorization/is, Admin — Kz Carol.

The gangmatching equivalent of this problem is finding whitlassAds are
needed to complete a gang. The solution to this problem isrtalre gangmatching
algorithm with a slight modification: When a port does not chaény other ports,
the gang is not abandoned; instead, the algorithm contittuestch the rest of the
ports in the gang and any dependencies on the unmatched@aghared. When a
partial gang has been completed, the “missing links” in tieggcan be determined
by using the requirements expressions of the unmatched, @ortl the references
to imported attributes in these ports. Satisfied requirdsnexpressions elsewhere
in the gang that contain such references can be partiallyaea to produce addi-
tional constraints for missing links. In Section 6.2 we wilbdify the gangmatching

algorithm to accept prototype ClassAds that will captuesthadditional constraints.

78

6.1 Break the Chain

In order to revoke a principal’s access to a resource, at tgascertificate in every
chain granting access must be revoked. To avoid unnecedisamption caused by
certificate revocation, the set of certificates revoked khlo&t minimal. This problem
may be abstracted to the problem of finding a minimal elenreatsubset lattice that
passes a given test.

The revocation oBreak the Chairproblem can be stated as follows: given a
resourceR, a principal P, and a set of SPKI/SDSI certificatésfind a minimal set
of certsC'y; such thatC - C), does not granf’ access tadR. The minimal element
of a lattice (MEL) problem is as follows: given s§tand testl’ C 2 whereT is
monotonic with respect to subset, find a minimal element efdbset lattice of
that passes te&t (i.e. no subset of/ isinT).

We now show that th&reak the Chairmproblem can be reduced to the MEL
problem. LetS = C andT ={C" C C'| C - (' fails to authorizeP to accessz}. We
must now prove the monotonicity @f. LetC’ € T'. If C' = C it has no supersets in
20.1fC"c C,letC”"=C"Ucwherece C-C'.C-C"=C-(C'"Uc)=(C-C")-c.
SinceC - (' falls to authorizeP to acces®, (C - C’) - ¢ must also fail to authorize
P to accessk. SoC” € T. SoT is monotonic with respect to subset.

A MEL M of (S,T) has the following properties:
e (' - M will not authorizeP to accessk (M € T)

e if M’ C M,C = M willauthorize P to accessR ()M is minimal)

79

These are precisely the criteria of the “Break the Chainbjam. [

To find one MEL require® (|C|) calls to test membership iA. The gangmatch-
ing algorithm in Section 5.3 can be used to perform the testvév¥er, repeated calls
to the gangmatching algorithm result in a great deal of rejpbaork. A closer look
at the algorithm to find a MEL reveals a way to avoid this exwenputation. The
MEL algorithm starts with the sef, repeatedly removes elements and tests the re-
sult. If the result passes the test, the algorithm contimessving elements. If the
result fails the test, the element removed is added to the B#ELand is included in
each successive test.

In the Break the Chairproblem, T is testing to see if the certificates not in the
current set fail to authoriz& to accessk. Since we are dealing with the set com-
plement, each successive step either adds a new certifacdbe tomplement, or
removes the last certificate added (adding it to the MEL sad)) adds a new cer-
tificate. Using this information, and the grammar producgdhe gangmatching
algorithm, we can devise an algorithm that performs thesestt operations without
any re-computation.

The algorithm in Figure 20 takes as input a set of ClassAdsat may be re-
moved during the course of the algorithm, a second set osB@sC;, .. that may
not be removed, and a set of rules generated by the gangmgtalgorithm from
the ClassAds i andC,,.. In the case of the ClassAd representation of SPKI/SDSI
certificates Cy,s. CcONsists of the root ClassAd, and the seed ClassAds described

in Section 4.4, whil& consists of the ClassAds representing actual certificates.

80

sets of ClassAdg}..., andC,,., are maintained throughout the algorithm to repre-
sent the current set of ClassAds being tested and the mesttreet of ClassAds that
passed the test. The reason for keeping track of two setseiasity rollback to the
previous state if adding a ClassAd causes the test to faihil&ly, the setg7.,,,
andg,,., represent the set of gangsters that can be generated byAGtaissC,.,,,.-
andC,.,. We initializeC,, ¢, asCpuse andg,,., asGy, the gangster created fro@y.

In the while loop, ClassAds fror@ are added along with the ClassAdsdp)., to
Ceurr, then the ADC method is called to determine the consequences of adding
If ADDC returns false, then addirfgresults in the test failing, in which case all new
additions are ignored and,.., andgG,,., remain the same. Otherwise, the test has
passed and,,., andg,,., are replaced b{.,,, andG.,,.

The ADDC method matches u@ with each gangstefr in G, to see if there
are any rules ilRRULES that are of the form@&' — G C). If there are, ther;’
must be added tg..,,. since it can be generated by ClassA@nd gangstet:. This
also results in the recursive metho®BG that, like ADDC, checks if any rules have
a right hand side containing’ and some ClassAd i@. If at any point in AoDC
or AbDDG a rule is found withS as the left hand side, then the set of ClassAds in
C..rr generates a complete gang corresponding to a certificate abthorizingP
to accessk. There are two consequences to encountering such a rule:userall
back our sets of ClassAds and gangsters to onés.inandg,,.,, and we must add
C to CUT. At the end of the algorithm, the sétUT will contain a minimal set

of (certificate) ClassAds whose removal will prevent thehattation we wish to

81

revoke.
Returning to theBreak the Chairexample at the beginning of the chapter, the
grammar generated by the gangmatching algorithm, giverrdigjuest and these cer-

tificates, is as follows{, refers to the seed ClassAd for princiga;):

S — Gh1 Sk, | Gio Sk | G7 Sk

G111 — Gg Cs

Gio — G5 Cs

Gs — G5 Cy

G — G, Cg

G5 — G1 Cs

Gs — Gy Cy

G — Gy (4

Gy —
Passing this grammar to tlBreak the Chairalgorithm, one of the possible runs (that
vary depending on the permutation of ClassAds picked) isveha Figure 21. The

value of CUT at the end of the run i6C}, C,}, corresponding to certificates (1) and

(4).

6.2 Missing Link

The solution to the missing link problem takes advantageéneffartial evaluation
facility of the gangmatching algorithm. In order to find a siigy link, one must first

provide prototypes of acceptable ClassAds. These pratstgpe then added to the

82

setC, and the gangmatching algorithm, with a few minor modifwasi, is run. If
the algorithm generates any valid complete gangs, it walb @enerate constraints on
any prototype ClassAds in each gang. These constraintsy alih the prototypes,
can be used to specify candidate missing link ClassAds.

A prototype ClassAd is structured the same way as a normas@th except
with dummy variables substituting for literal values. Taekimmy variables must
be treated as literal values by the methods of the gangnmatetgorithm, with the
exception of the MTCH partial evaluation method where they are treated as if they
were attribute references. Thus, when a potential matelsisd between an indepen-
dent gangstefr and a portP of a dummy ClassAd, the MrcH method will return a
formula over the dummy variables A and the attributes imported from ports prior
to P (Jp).

Let D be a set of dummy variables. Lét= (Pg, (g, Lg, @) be an independent
gangster. LetP = (Ep, Ip, Jp, dp, ¢p) be a parent port of a prototype ClassAd
D. ¢ = MATCH(G, D) is a formula over/, U V U D. Figure 22 shows a revised
version of the GNERATENEWGANGSTERS method from Figure 16. GVERATE-
NEWGANGSTERYG, D, v) creates a binding relatiob,; CZ x (V UD U Jp). In
line 8 of Figure 22 a binding relatioh is created from.,; N (Z x Ip:) for each child
port P’ of D. Since we wish to treat dummy variables as literal valueglaments
of L,, containing elements dP are included in these binding relations. Similarly
1)’ contains no occurrences of elementsof Therefore all occurrences of dummy

variables in eacld7,,..,, created are restricted to those in the respective child port

83

of D. Note that for eacld+,,.,, created, a rule(,..., — G D) is added taRULES.
All of the changes we need to make to theNERATENEWGANGSTERSmMethod are
in lines 15, 17, 18, and 25.

The first change we make to theeBERATENEWGANGSTERSmMethod (line 15)
is to create a new constraint formulg made up of all of the predicates ifnthat
contain occurrences of dummy variables. Again, we wishdattdummy variables
as literal values here, so in line 17 the binding functibmust include elements of
L, that contain occurrences of elementsZaf In line 18 we appendp to ¥¢,
ensuring that the predicates over dummy variables genmkatenatchingG with
C are preserved. By passing along in this way we assure that when a complete
gang is created the from the last match contains all of the predicates over dummy
variables, hence the addition af)to the rule generated in line 25.

Returning to theMissing Linkexamples at the beginning of the chapter, given
this request and this set of certificates we can use the gdolgmgalgorithm in Fig-
ure 15 with the modified GNERATENEWGANGSTERSmMethod in Figure 22 to find a
missing link to complete the desired certificate chain. Wéalso need a prototype
ClassAd with dummy variables in place of literal values. Det {IssuerValue?,
IdentifierValuel, IssuerValueP, IdentifierValueP}. Let D be a prototype

ClassAd with two ports®’ and P where:

6 ={Type— "cert request"}
o = (Type =="cert of fer") A (CertType ==" Nane") A (Issuer ==

IssuerValuel) A (Identifier == IdentifierV aluel)

84

6P ={Type "cert of fer",CertType — " Nane", [ssuer —
IssuerValue?, Identifier — IdentifierValuel}

¢P = (T'ype =="cert request ")

Figure 23 shows example run of tiissing Linkversion of the gangmatching al-
gorithm. The end result is a complete gang including the dyrassAd, anno-
tated with the formula) = (IssuerValueP? =="KA") A (IdentifierValue? ==
"Admi n") A ("KB" == IssuerValuel) A (" Carol " == IdentifierValuel).
These constraints on the dummy variables define the cettifica Admin — Kp

Carol.

85

BREAKTHECHAIN(C, Cpose, RULES)
CUT «— o
gprev — {GO}
Cprev — Cbase
while C # @
popC from C
gC’UJ‘T — nge’l)
CCUTT — Cprev U C
if ADDC(C, Gewrry Cowrry CUT, RULES)
gprev — gcurr
10 CpTGU — CC’UJ‘T
11 return CUT

OCoOoO~NOOUTh, WNPRE

ADDC(C, G,C,CUT, RULES)
1 for eachGingG
2 if (S—GC)e RULES
3 cUT —cUuTucC
4 return false
5 else foreachG’ whereG’ — G C
6 if ADDG(G, G, C, RULES) =false
7 cUT —curucC
8 return false
9 return true

ADDG(G, G,C, RULES)
1 for eachC inC
2 if (S—GC)e RULES
3 return false
4 elseG — GUG
5 for eachG’ whereG' — G C
6 if ADDG(G, G, C, RULES) =false
7 return false
8 return true

Figure 20: TheBreak the Chairalgorithm

‘ Geurr (gprev) ‘ Ceurr (Cprev) ‘ Action ‘ cur
{Go} {Sks, Co} addC, Iz
{G(), Gg} {SKB' Co, CQ} addC6 %]
{G(), Gg} {SKB' C(), C,, addC5 %]

o)
{G(), Gg} {SKB' C(), C,, addC1 %]

Ce, G5}
{G(), G3, Gl, {SKB' C(), Cz, removeCl {Cl}
G5, G7, GIO) S} Cﬁ, C5, Cl} addC4
{G(), G3, Gg, {SKB' C(), Cz, removeC4 {Cl, C4}
GH, S} Cﬁ, C5, C4} addC3

Figure 21: An example run of tHareak the Chairalgorithm

86

87

GENERATENEWGANGSTERYG, C,)
1 P« (C'sparentportL, «— &,
2 for eachattr)—Y €dp
3 if (X, attr) € Lg
4 Ly — Ly U{(X, Y)}

5 L]\/[— LM U {(CLtt’f’, Y)}

6 Gige < null

7 for each child portP’ of C'

8 L—{X,Y)eLyl|Yelp}

9 Y’ «— A {predicates in) containing an € Ip:}

10 Grew — ADDGANGSTER P, &, L,)

11 if Guse =null

12 RULES «— RULES U {(Gpew — G C)}

13 elseNEXT[Gast] < Grew

14 Glast — Gnew

15 G'— NEXTI|G]; ¥p < A {predicates in) containing an element @}

16 if G' # null

17 f—{X,Y)eLy|,X€Jp,,YcVUD}

18 Gpew — ADDGANGSTER Py, 3, Lgr, Yo N Yp)

19 if Glae = null -

20 RULES «— RULES U {(Gpeww — G C)}

21 elseNEXT[Gast] < Grew

22 NEXT[Gpew] — NEXT[G']

23 elsif Guse # null

24 NEXT[Gs] — null

25 elseRULES « RULES U{(S — G C (¥))}

Figure 22: The modified version of the GenerateNewGangstethiod (changes
indicated by underlines)

| Match | Gangsters | Rules
GOZ(PO,Q,Q,T) G0—>C()
(Go, C1) | G1=(P),2,92,T) G — Gy C4
Gy = (P}, @, {(Subject), Subject)},
(Subject =="K_.C")
(G4, D) G3 = (PP, @, {(Subject}, Subject)}, | Gs — G D
(Subject =="K_.C")
G4 = (P}, @, {(Subject), Subject)},
(Subject =="K.C") A
(IssuerValuey =="KA") A
(IdentifierValuey =="Adm n"))
(Gg, Cg) G5 = (Pll, {Subject(l] — " KC }, G5 — Gg CQ
{(Subjecty, Subject)},
(Subject =="K.C") A
(IssuerValuey =="KA") A
(IdentifierValuey =="Adm n") A
(" KB" == IssuerValuel’) A
(" Car ol " == IdentifierV aluel’))
(Gs, SKC) S — G5 SKB ()

Figure 23: An example run of thdissing Linkalgorithm

88

89

Chapter 7

Related Work

The research related to the work presented in this dissmTiedn be divided into five
general categories: matchmaking, resource managemesittanagement, policy
languages and frameworks, and query analysis. Firstlyneegwf matchmaking re-
search covers gangmatching, alternatives to gangmatcgegt matchmaking, and
unification based matchmaking. Secondly, a review of workesource manage-
ment includes Condor, Globus, and other resource managdraareworks based
on service level agreements (SLAs). Thirdly, SPKI/SDSeegsh is explored along
with alternate trust management schemes. Fourthly, depeliay languages and
frameworks for networks, distributed systems, the sernamb, and grid comput-
ing are investigated. Finally, research on database quetlysis is compared to the

policy analysis methods presented in Chapter 3.

7.1 Matchmaking

The fundamental concepts of gangmatching are laid out ih [B3more thorough
discussion of gangmatching as well as two optimizationfiefariginal gangmatch-

ing algorithm can be found in [51]. Both optimizations — thstfinvolves indexing

90

ClassAds, the second involves out-of-order matching — atergially compatible
with the enhanced gangmatching algorithm described in @©hdp Out-of-order
matching may require a more sophisticated method for adssgribe regular gram-
mar representing valid gangs.

Building on work using the ClassAd language to specify sataming
policies [42] for grid resource selection, a new language @matchmaking mech-
anism called Redline [41] has been developed based on aamh&inguage model.
Set-matching involves matching a single request ClassAll an unspecified num-
ber of offer ClassAds. Redline expresses both the requiteshaand the attributes of
an entity as constraints, making it unclear which entititsbates belong to. How-
ever, Redline does allow querying of requirements, a feathat is not currently
possible in the ClassAd language.

Matchmaking has been explored in the field of agent techiyol69, 48, 49,
60]. There are some similarities between ClassAds and agenmunication lan-
guages [25, 22, 58], though ClassAds employ a representatiore akin to a
database record than the rule-based representation usinbd®/ languages. Sev-
eral matchmaking frameworks [63, 56, 50, 47, 18, 36] basedestription log-
ics [19, 27, 5] have also been proposed. Like the agent conwamion languages,

these employ a rule-based representation.

91

There are also similarities between ClassAds matchmakidglae unification-
based matching used by Linda [24] and Datalog. Linda usdegwontaining vari-
ables or literals to search a tuple space for a matching.tid¢alog operates sim-
ilarly on relational databases. While unification is cemapowerful enough to en-
compass the functionality of ClassAd-based matchmaking,styntax of boolean
expressions used by the ClassAd language is clearer andamiocese. There have
been efforts to draw on literature on constraint logic pamgming (CLP) [28], con-
straint query languages (CQL) [35], and constraint datebd€DB) [54] to add
constraints to Datalog [55, 39]. However, CQL and CDB tyfycassume a fixed

schema whereas ClassAds use a semi-structured data model.

7.2 Resource Management

Resource selection policy specification is an importanigss grid computing. Con-
dor uses the ClassAd language to specify resource selgmbiasies in grid com-
puting [61]. In Globus [13, 14], a suite of grid computing &pations, customers
describe required resources in a resource specificatigquéme (RSL) based on a
predefined schema of the resources database in contrastsoltama free ClassAd
language. However, resources cannot place constrainesjolests as in the bilateral
matchmaking model utilized by Condor.

A more powerful framework for resource management in digted systems,
the Services Negotiation and Acquisition Protocol (SNAB][maps resource in-

teractions to platform-independent service level agrege(SLAs). SNAP uses an

92

extensible language J for describing jobs along with a suhsguage R to describe
resource requirements. J is similar in purpose to RSL ands@lds, but is more
extensible than the former and more rigorously typed thandtter. However, the
simplicity of the ClassAd language is one of its most attvacfeatures. A more
complex language like J may not be as easy to use.

Another approach to resource management, also using SlLcAgeared towards
grid computing, has been described here [20]. This framlewses a resource alloca-
tion policy language that is more expressive than RSL, bobiss expressive as the
ClassAd language. In particular there is no support fortaty boolean expressions

like those available with ClassAds.

7.3 Trust Management

Authorization policy is a key component of trust managemesystems.
The SPKI/SDSI [21] framework has been discussed in somal detSection 2.2.
The term rewriting approach to SPKI/SDSI was introducedli®] [along with an
algorithm for certificate chain discovery.

Itis also possible to use pushdown systems (PDS) to redr88#tl/SDSI rewrite
rules [29, 30]. The enhanced gangmatching algorithm in @ndpbegan as a gen-
eralization of thgost*algorithm for PDS reachability. A PDS is essentially a Push-
down Automaton without the capacity for generating a laigguaSPKI/SDSI cer-
tificates expressed as rewrite rules can be converted inéb af sules for a PDS,

and algorithms are available to enumerate all possibldtmegstack states given an

93

initial stack stateffost*) and all stack states antecedent to a given stack gisg®)(
Either thepre* or post* algorithm can be used to generate SPKI/SDSI certificate
chains. In addition several other aspects of Pushdown Bgstee exploited to an-
swer specific authorization questions. However, neitheBtieak the Chaimor the
Missing Linkproblems are discussed. As a side note, it is possible t@sept a
generic pushdown system using ClassAds and gangmatchimggh the enhanced
gangmatching algorithm above would require some modiboati

Another trust management system, Keynote [8], uses theepbrof assertions
to specify authorization policy. An assertion is very samiin function and form
to a SPKI/SDSI authorization certificate in that it idensfi@ principal making the
assertion (similar to an issuer of an auth cert in SPKI/SE®)recipients (subjects)
of the authorization and conditions of authorization. Ityniie possible to use the

ClassAd language as a concrete representation of the Keyhadel.

7.4 Policy Languages and Frameworks

The resource selection and authorization policies digzlssthis dissertation both
fall under the category gdrovisions Provisions are conditions that must be satisfied
or actions that must occur before a decision takes placeoritrastobligationsare
conditions or actions that must be fulfilled after a decidias been made [7]. One
example of an obligation policy is a service level agreen{8htd). An SLA is an
agreement between a service provider and a customer thafispeertain attributes

of the service such as availability, serviceability, periance and operation [66].

94

Obligation policy is the main focus in policy based managetoénetworks. The
WSLA [3, 37, 17] framework for service level agreements wsseemewhat cumber-
some XML based representation for specification of oblaragolicy. PDL [43] ex-
presses obligation policies as event-condition-actidestur his framework is some-
what similar to the use of the ClassAd language to specificpah Condor, except
that the events and actions are not formally defined. For plabefore an execute
machine can run a job Condor must evalua&t art expression (usually identical
to the machine’®equi r enent s expression). In this case the event is a successful
match, the conditionis th&t ar t expression, and the action is running the job on the
machine. Hawkeye [2], a system monitoring applicationsuSkssAds to describe
system events, ClassAd expressions to serve as triggerdeiatifying interesting
behavior, and matchmaking to detect when events set oft tinggers.

The Ponder policy language [16] can also be used to exprésoblbigation and
authorization policies. Ponder is an object oriented lagguthat allows for declara-
tion of policy types and instantiation of those types. Auikation policies contain a
subject (corresponding to a SPKI/SDSI issuer), a targeP@/SDSI subject), a set
of actions being authorized, and a constraint expressidicating when this action
may be authorized. Additional authorization related psicn Ponder include infor-
mation filtering, delegation, and refrain policies. Obtiga policies also contain a
subject, a target, a set of actions, and a “when” expressiadition to a specifi-
cation of an event that triggers the policy. Ponder is cletimé most expressive of

the policy languages described thus far, but it does not theseapability to express

95

resource selection policies.

Several other policy languages — such as Rei [33, 32, 34]s k&g 64, 45], have
been developed specifically for the semantic web and gridpcimg applications.
These languages are typically based on description logids &s DAML and OWL.
A comparison of Rei, Kaos and Ponder is presented here [68pther language
based on description logics called PeerTrust [23, 6] wagldped specifically for
automated trust negotiation. The rule language used by R@ETRNE [10] trust
negotiation framework is partially based on PeerTrust.ahfework for policy anal-
ysis of rule-based policies [11], similar to the work preasenin Chapters 3 and 6,
has been proposed. Aside from a rule-based notation, thesigogficant difference
between these languages and ClassAds is that none of thesrbbean applied to

resource selection policy.

7.5 Query Analysis

Most of the work relevant to ClassAd analysis is in literatwn databases, par-
ticularly on cooperative query answering. In [46] a mechanicalled SEAVE is
presented for extracting and verifying presuppositionsnfrqueries. This mecha-
nism identifies queries that result in null answers, thersfmdre general queries by
weakening or deleting query sub-expressions. The resalset of maximally gen-
eral erroneous presuppositions that may be of more valugetoder than a simple

null answer.

96

Similar techniques are discussed more formally in [26]. fBayddiscusses identi-
fication of minimal failing sub-querie@VFSs) andnaximal succeeding sub-queries
(MSSs). Godfrey’s MFSs are analogous to the erroneous pesitions generated
by Motro’s SEAVE mechanism. The MSSs are the least generargézations of
the initial successful query. An algorithm called ISHMAEL presented that enu-
merates MFSs and MSSs. This algorithm is NP-hard for quefiasbitrary length,
but remains polynomial for fixed length queries.

Finally, in [44] the notion of aquery difference operatas introduced to indi-
cate missing information in query results. The authorsudis@ system of resource
agents, brokers, and user agents that resembles the utisttifsamework used by
Condor. The primary focus of this work is to indicate the imgbeteness of query
answers. The query difference operator is used to gendrescription of the set
of results covered by the query, but not covered by the queswar. This set is ex-
pressed in relational algebra and can presumably be ceavetb a pseudo-English
response for the user.

ClassAd analysis uses similar techniques and notions tadeaseful informa-
tion regarding matchmaking failure. As discussed previgowsir conflict detection
algorithm covers similar territory as [26]. One key diffece, as with the CQL and
CDB work discussed earlier, is the semi-structured dataeinetlich, unlike the re-
lational model discussed in the cited publications, dodsequire a fixed schema.
Another important difference is the reflexive nature of GRds. In database terms

a ClassAd contains both a query (the requirements exprésaim a record (the set

97

of attributes with literal values). Nevertheless, many s tssues encountered in
ClassAd analysis are applicable in database query analysiissearch, or any other

field where boolean expressions are used as constraints.

98

Chapter 8

Conclusions and Future Work

Distributed computing environments provide users with devange of services that
a single isolated system can not provide. However, as imtbid, with great power
there must also come — great responsibility [38]. Policiasttbe designed and
enforced to protect the interests of users and providersasfet services. Resource
selection policies address the question: What kind of nesodioes a principal want,
and is such a resource available? Access control policer®as the question: Can a
principal be trusted to have access to a given resource?

The framework for policy specification and interpretatisagented in this disser-
tation provides a clearing house for both types of polidies.built on the simple yet
powerful concept of matchmaking. The ClassAd language aaitimaking algo-
rithms were initially developed to solve resource selecpooblems in a distributed
system. As we have shown, the same framework with some miodifivations is
applicable to managing access control policies.

We have demonstrated that the ClassAd language can be usspetify
SPKI/SDSI authorization policies, and an enhanced gangrireg algorithm can be

used to assemble SPKI/SDSI certificate chains correcthe#iuiently. We have also

99

presented the necessary theoretical underpinnings ohtreneed gangmatching al-
gorithm which generalize beyond the specific instance ofIBHBSI certificate chain

discovery. Finally, we have demonstrated analysis teclasdor bilateral and mul-

tilateral matchmaking that serve as essential tools forpretrending matchmaking
results. Taken together these contributions provide astdfbamework for specifying

and interpreting resource allocation policies.

Further research is possible in a number of areas. The eathgangmatching al-
gorithm presented in Chapter 5 allows for the creation ofigamth unlimited depth,
such as the ClassAd equivalent of a SPKI/SDSI certificatenci&et-matching [42]
is an extension of gangmatching that allows for the creatfagangs with unlimited
breadth such as an unspecified number of compute machines sagsyiaquire-
ment for minimum total processing power. It is possible #rdtanced gangmatching
and set-matching could be integrated into a more powerftt¢imaaking process.

In Chapter 7, a distinction was drawn between two types a€poprovisionsand
obligations[7]. The resource selection and authorization policiesudised in this
dissertation fall under the category of provisions, or @eb that must be adhered
to before a resource or service can be used. Obligationsdi@es that dictate
the terms of use for a resource or service while it is beinglusecommon type of
obligationis a service level agreement (SLA). The seneeellagreements described
in the WSLA [3] framework could be expressed as ClassAds,taimaaking process
could be used to determine if the SLA is violated, and matdingaanalysis could

be used to determine the cause of the violation.

100

An aspect of SPKI/SDSI authorization that is not dealt witlhis dissertation is
the actual rights granted by a certificate. Specifying thiggas and determining how
they are delegated can be very complex. However, a basiemgitation of rights
delegation could be added to the ClassAd representatiokf/SDSI certificates
described in Chapter 4 without impacting the algorithm assed in Chapter 5.

The algorithm presented in Chapter 5, like the algorithnj$2hand [29] assume
a centralized facility for certificate chain assembly. Timisans that while the speci-
fication of policy may be distributed, the interpretatiorpoficy is not. A distributed
algorithm for assembling credential chains using weiglgeshdown systems has
been proposed for SPKI/SDSI [31]. Additionally, the trushmagement language
RT, [40] was designed to support a distributed algorithm thatzaapplied to SDSI.
In the general case of gangmatching, a distributed algantlould certainly be pos-
sible, but not without some added complications. The prnpaoblem is how to
make temporary reservations of resources that may be emhided complete gang
can not be found. As in distributed transactions in datalsgseems, some sort of
two-phased commit could be used.

In the realm of resource allocation, matchmaking providesdonvenience of
bringing together principals with common interests. Thalify for policy diagnos-
tics using matchmaking analysis provides the equally ingmrole of determining
why policies are successful or unsuccessful. Includedergtieat responsibility re-
ferred to above is the responsibility to evaluate the effeness of policies and to

change these policies when they are ineffective or doinmmhdmhe maintenance of

101

healthy communities, whether real or virtual, requiresftiee flow of information

built on the foundation of trust, integrity, and common goal

102

Bibliography

[1] Condor version 6.8 manual, section 3.6: Security in @nd

http://www.cs.wisc.edu/condor/manual/v6.&3ecurity.html.

[2] A monitoring and management tool for distributed syssem

http://www.cs.wisc.edu/condor/hawkeye/.

[3] Web Service Level Agreements (WSLA) Project.

http://www.research.ibm.com/wsla/.

[4] A. Arpaci-Dusseau, R. Arpaci-Dusseau, N. Burnett, T.nBry, T. Engle,
H. Gunawi, J. Nugent, and F. Popovici. Transforming po$idigto mecha-
nisms with infokernel. IrProceedings of the 19th ACM Symposium on Operat-
ing Systems Principles (SOSP '0Bplton Landing (Lake George), New York,
October 2003.

[5] F. Baader and W. Nutt. Basic description logics. In F. @&aD. Calvanese,
D. McGuinness, D. Nardi, and P.F. Patel-Schneide, edifting, Description
Logic Handbook: Theory, Implementation, and Applicatiddambridge Uni-

versity Press, 2003.

[6] J. Basney, W. Nejdl, D. Olmedilla, V. Welch, and M. WingleNegotiating trust

on the grid. InSemantic Grig2005.

103

[7] C. Bettini, S. Jajodia, S. Wang, and D. Wijesekera. Psiovis and obligations
in policy rule management and security applications.Ptaceedings of 28th
International Conference on Very Large Data Bases (VLOBpes 502-513,
Hong Kong, China, August 2002.

[8] M. Blaze, J. Feigenbaum, J. loannidis, and A. Keromylike KeyNote trust-

management system version 2. RFC 2704, September 1999.

[9] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized tmnenagement. In

Proceedings of the IEEE Conference on Security and Prividiey 1996.

[10] P. A. Bonatti and D. Olmedilla. Driving and monitoringgvisional trust nego-

tiation with metapolicies. I®POLICY, pages 14-23, 2005.

[11] P. A. Bonatti, D. Olmedilla, and J. Peer. Advanced pobgplanations on the
web. INECAI, 2006.

[12] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Mog; and R. Rivest. Cer-
tificate chain discovery in SPKI/SDSlournal of Computer Securit9(4):285—
322, 2001.

[13] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, Sarkih, W. Smith, and
S. Tuecke. A Resource Management Architecture for Metacimgp Systems.
In Proceedings of IPPS/SPDP '98 Workshop on Job Scheduliragegies for

Parallel Processingpages 62—-82, 1998.

104

[14] Karl Czajkowski, lan T. Foster, and Carl Kesselman. dRese co-allocation in

computational grids. IHPDC, 1999.

[15] Karl Czajkowski, lan T. Foster, Carl Kesselman, Vollk&ander, and Steven
Tuecke. Snap: A protocol for negotiating service level agrents and coor-
dinating resource management in distributed systemgdSBPP '02: Revised
Papers from the 8th International Workshop on Job Schedufitrategies for

Parallel Processingpages 153-183, London, UK, 2002. Springer-Verlag.

[16] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Poruldicy specifi-

cation languagel_ecture Notes in Computer Sciend®95:18-38, 2001.

[17] M. Debusmann and A. Keller. Sla-driven management sfriiuted systems

using the common information model. mar 2003.

[18] G. Denker, L. Kagal, T. Finin, M. Paolucci, and K. P. SgaaSecurity for daml
web services: Annotation and matchmaking. Ihternational Semantic Web

Conferencepages 335-350, 2003.

[19] F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasw in description
logics. In Gerhard Brewka, editoPrinciples of Knowledge Representatjon

pages 191-236. CSLI Publications, Stanford, Californg®6l

[20] C. Dumitrescu, M. Wilde, and I. T. Foster. A model for gsapolicy-based

resource allocation in grids. RROLICY, pages 191-200, 2005.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

105

C. Ellison, B. Frantz, B. Lampson, R. L. Rivest, B. Thanand T. Ylonen.

SPKI certificate theory. RFC 2693, September 1999.

T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as agent commu-
nication language. IRroc. of the Third Int'l Conf. on Information and Knowl-

edge Management, CIKM-9ACM press, nov 1994,

R. Gavriloaie, W. Nejdl, D. Olmedilla, K. Seamons, and Winslett. No reg-
istration needed: How to use declarative policies and i to access sen-

sitive resources on the semantic webEBWS$pages 342-356, 2004.

David Gelernter. Generative communication in lindeCM Trans. Program.

Lang. Syst.7(1):80-112, 1985.

M. Genesereth, , N. Singh, and M. Syed. A distributedrgmaoous knowledge
sharing approach to software interoperationPtac. of the Int’l Symposium on

Fifth Generation Computing Systenpages 125-139, 1994.

P. Godfrey. Minimization in cooperative response tiirig database queries.
International Journal of Cooperative Information Syste(hkCIS), 6(2):95—

149, June 1997.

I. Horrocks, U. Sattler, and S. Tobies. Practical re@sg for expressive de-
scription logics. In H. Ganzinger, D. McAllester, and A. dokov, editors,

Proceedings of the 6th International Conference on LogrcHmgramming

106

and Automated Reasoning (LPAR9®)mber 1705, pages 161-180. Springer-

Verlag, 1999.

[28] J. Jaffar and M. J. Maher. Constraint logic programmiAgsurvey. J. Log.

Program, 19/20:503-581, 1994.

[29] S. Jha and T. Reps. Analysis of SPKI/SDSI certificatesgusodel checking.
In Proceedings of IEEE Computer Security Foundations Wonkg@SFW)

IEEE Computer Society Press, 2002.

[30] S.JhaandT. W. Reps. Model checking spki/sdisiirnal of Computer Security
12(3-4):317-353, 2004.

[31] S. Jha, S. Schwoon, H. Wang, and T. W. Reps. Weighteddmuah systems

and trust-management systemsTIRCAS pages 1-26, 2006.

[32] L. Kagal, T. Finin, and A. Joshi. A policy based appro&eisecurity for the se-

mantic web. Innternational Semantic Web Conferenpages 402—-418, 2003.

[33] L. Kagal, T. W. Finin, and A. Joshi. A policy language fopervasive comput-

ing environment. IPOLICY, pages 63—, 2003.

[34] L. Kagal, M. Paolucci, N. Srinivasan, G. Denker, T. Finand K. Sycara. Au-
thorization and privacy for semantic web servicdBEE Intelligent Systems

19(4):50-56, 2004,

[35] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constrquery languages.
In PODS pages 299-313, 1990.

[36]

[37]

[38]

[39]

[40]

[41]

[42]

107

T. Kawamura, J. De Blasio, T. Hasegawa, M. Paolucci, kn8ycara. Public
deployment of semantic service matchmaker with uddi bgsimegistry. In

International Semantic Web Conferenpages 752—-766, 2004.

A. Keller and H. Ludwig. Defining and monitoring servilexel agreements for

dynamic e-business. nov 2002.

S. Lee. Amazing Stories #15, August 1962.

N. Liand J. C. Mitchell. Datalog with constraints: A fodation for trust man-

agement languages. RADL, pages 58-73, 2003.

N. Li, W. H. Winsborough, and J. C. Mitchell. Distributecredential chain
discovery in trust managemenflournal of Computer Securityl1(1):35-86,

2003.

C. Liu and I. Foster. A constraint language approach aébammaking. IrnPro-
ceedings of the 14th International Workshop on Researcletsen Data Engi-

neering (RIDE’04) pages 7—14, March 2004.

C. Liu, L. Yang, I. Foster, and D. Angulo. Design and exalon of a re-
source selection framework for grid applications. Aroceedings of the 11th
IEEE International Symposium on High Performance DistrdauComputing

(HPDC11) July 2002.

[43] J. Lobo, R. Bhatia, and S. Naqvi. A policy descriptiondaage. IMAAAI/IAA],

pages 291-298, 1999.

[44]

[45]

[46]

[47]

[48]

[49]

[50]

108

M. Minock, M. Rusinkiewicz, and B. Perry. The identiftean of missing in-
formation resources by using the query difference operakechnical report,

MCC, April 1999.

L. Moreau, J. M. Bradshaw, M. Breedy, L. Bunch, P. J. Hay&. Johnson,
S. Kulkarni, J. Lott, N. Suri, and A. Uszok. Behavioural sfieation of grid

services with the kaos policy language.G€GRID, pages 816—-823, 2005.

A. Motro. SEAVE: A mechanism for verifying user presuggitions in query
systems ACM Transactions on Office Information Systea(4d):312—-330, Oc-

tober 1986.

T. Di Noia, E. Di Sciascio, F. M. Donini, and M. Mongiello Abductive
matchmaking using description logics. Rioceedings of Eighteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI) pages 337-342,
aug 2003.

E. Ogston and S. Vassiliadis. Local distributed ageatainmaking. IfCooplS

pages 67-79, 2001.

E. Ogston and S. Vassiliadis. Unstructured agent nmaddting: experiments in

timing and fuzzy matching. I8AG pages 300-305, 2002.

M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Sdimanatching of
web services capabilities. limternational Semantic Web Conferengmages

333-347, 2002.

[51]

[52]

[53]

[54]

[55]

[56]

[57]

109

R. Raman.Matchmaking Frameworks for Distributed Resource Managgme

PhD thesis, University of Wisconsin, Madison, 2000.

R. Raman, M. Livny, and M. Solomon. Matchmaking: Dibtried resource
management for high-throughput computing. Rroceedings of the Seventh
IEEE International Symposium on High Performance DistrdauComputing

(HPDC7), July 1998.

R. Raman, M. Livny, and M. Solomon. Policy driven heggoeous resource
co-allocation with gangmatching. IRroceedings of the Twelfth IEEE Inter-
national Symposium on High Performance Distributed CommgutHPDC12)

Seattle, WA, June 2003.

P. Z. Revesz. Constraint databases: A survegcture Notes in Computer

Sciencel358:209-246, 1998.

P. Z. Revesz. Safe datalog queries with linear congailn CP, pages 355—
369, 1998.
E. Di Sciascio, F. M. Donini, and M. Mongiello. Knowledgepresentation for

matchmaking in p2p e-commerce. Atti del VIl Convegno dell’Associazione

Italiana di Intelligenza Artificialesep 2002.

M. Solomon. The ClassAd language reference manualores4, May 2004.

http://www.cs.wisc.edu/condor/classad/refman/.

[58]

[59]

[60]

[61]

[62]

[63]

[64]

110

K. Sycara, K. Decker, A. Pannu, M. Williamson, and D. genDistributed

intelligent agentslIEEE Experf pages 36—46, dec 1996.

K. Sycara, K. Decker, and M. Williamson. Matchmakingddorokering. In

Proc. of the Second Int’'l Conf. on Multi-Agent Systems (IGv%) Dec 1996.

K. Sycara, S. Widoff, M. Klusch, and J. Lu. Larks: Dynanmatchmaking
among heterogeneous software agents in cybersgagenomous Agents and

Multi-Agent System$(2):173—-203, 2002.

D. Thain, T. Tannenbaum, and M. Livny. Condor and thelgim Fran Berman,
Geoffrey Fox, and Tony Hey, editor§rid Computing: Making the Global

Infrastructure a RealityJohn Wiley & Sons Inc., December 2002.

G. Tonti, J. Bradshaw, R. Jeffers, R. Montanari, N. Sand A. Uszok. Se-
mantic web languages for policy representation and reagoi comparison
of kaos, rei, and ponder. Imternational Semantic Web Conferengages

419-437, 2003.

D. Trastour, C. Bartolini, and J. Gonzalez-Castillo.sémantic web approach
to service description for matchmaking of servicesSWWS$pages 447-461,

2001.

A. Uszok, J. Bradshaw, and R. Jeffers. Kaos: A policy donchain services
framework for grid computing and semantic web servicesTiuast, pages 16—

26, 2004.

111

[65] A. Uszok, J. M. Bradshaw, R. Jeffers, N. Suri, P. J. Hayds R. Breedy,
L. Bunch, M. Johnson, S. Kulkarni, and J. Lott. Kaos policg aomain ser-
vices: Toward a description-logic approach to policy reprgation, deconflic-

tion, and enforcement. IROLICY, pages 93—, 2003.

[66] A. Westerinen, J. Schnizlein, J. Strassner, M. SchegrlB. Quinn, S. Herzog,
A. Huynh, M. Carlson, J. Perry, and S. Waldbusser. Polianiteology. RFC

3198, November 2001.

