
Profiling Grid Data Transfer Protocols and

Servers

George Kola, Tevfik Kosar, and Miron Livny

Computer Sciences Department, University of Wisconsin-Madison
1210 West Dayton Street, Madison WI 53706

{kola,kosart,miron}@cs.wisc.edu

Abstract. The trend of data intensive grid applications has brought
grid storage protocols and servers into focus. The objective of this study
is to gain an understanding of how time is spent in the storage protocols
and servers. The storage protocols have a variety of tuning parameters.
Some parameters improve single client performance at the expense of in-
creased server load, thereby limiting the number of served clients. What
ultimately matters is the throughput of the whole system. Some param-
eters increase the flexibility or security of the system at some expense.
The objective of this study is to make such trade-offs clear and enable
easy full system optimization.

1 Introduction

The increasing trend towards data intensive grid applications [1] [2] [3] has
brought grid data transfer protocols and storage servers into focus. We have
done a full system profile of GridFTP [4] and NeST [5], two widely used data
access and storage server and detailed how time is spent in each server.

Our profiling details server side CPU characteristics and shows the effects
of concurrency level, number of parallel streams and protocol parameters like
block-size on server load and transfer rate. This makes the trade-off between
single client performance and server load clear. We also explain why certain
parallelism level lowers the server load while increasing the transfer rate.

A good understanding of this helps computer architects to add processor
features and operating system designers to optimize the operating system. It
enables middleware and applications developers to optimize their software and
helps grid deployers to choose appropriate machine configuration for their ap-
plications.

2 Methodology

We wanted to understand how time is spent in data access protocols and storage
servers. We decided to study GridFTP and NeST, two widely used grid data
access and storage servers. NeST server is interesting because it supports space
reservation and a variety of interfaces: native chirp [5], NFS [6] and GridFTP.

2 George Kola, Tevfik Kosar and Miron Livny

Our desire to perform a full-system characterization including the path through
the kernel while keeping the system perturbations minimal narrowed our choice
of profiler to Oprofile [7], a Linux system-wide profiler based on Digital Continu-
ous Profiling Infrastructure [8]. Oprofile uses the hardware performance counters
on the Pentium family of processors.

For profiling, we setup two server machines: a moderate server, 1660 MHz
Athlon XP CPU with 512 MB RAM, and a powerful server, dual Pentium 4
2.4 GHz CPU with 1 GB RAM. Both servers used Linux kernel 2.4.20. The
moderate server had 100 Mbps connectivity while the powerful one had 1000
Mbps connectivity. We used three client machines, two of them were in local
area and 1 was in wide area. The local area clients were dual 2.8 GHz Xeons and
had 100 Mbps connectivity and were chosen randomly from a pool of 50 machines
and the wide area client was quad 2 GHz Xeon with 100 Mbps connectivity. The
powerful machines ensured that the clients were not the bottleneck and brought
out the server characteristics.

We got full system profiles for both of GridFTP 2.4.3 and NeST servers using
clients in the local area. For the extended study of GridFTP performance, we
used clients both in local area and wide area.

Since we used real wide-area transfers we did not have any control over the
loss rate. We did not trace it during the experiment because we felt such a
packet trace collection at end hosts would interfere with our experiment. But we
did periodic network traces and found that wide-area losses were negligible (less
than 0.5%) at 100 Mbps. We have a 655 Mbps wide-area ATM connectivity and
we found that the packet losses started showing up above 250 Mbps.

We tried out some commonly used options like parallel streams and concur-
rent number of file transfers in GridFTP and found the effect on server load.

3 Full System Characterization

We studied how the time is spent on the server side and present the results
in this section. This characterization details the fraction of time spent in the
different system parts including the kernel. This is significant for data servers
because most of the time is spent in the kernel and plain user-level server profile
is not sufficient.

3.1 GridFTP

Figure 1 shows the GridFTP server CPU characteristic when a single local area
client reads/writes a set of 100 MB files. The read and write clients achieved a
transfer rate of 6.45 MBPS and 7.83 MBPS respectively.

In terms of server CPU load, reads from the server are more expensive than
writes to the server. The extra cost is spent in interrupt handling and in the
ethernet driver. The machine has an Intel Ether Express Pro 100 network inter-
face card(NIC). We found that interrupt coalescing lowered the interrupt cost
during write to server. The NIC transfers the received packets via DMA to main

Profiling Grid Data Transfer Protocols and Servers 3

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

 P
er

ce
n

ta
g

e
o

f
C

P
U

 T
im

e

Read From GridFTP 15.9 40.9 10.3 8.1 2.7 2.7 4.0 2.0 13.4

Write To GridFTP 44.5 1.5 4.9 16.8 3.8 5.1 0.3 3.8 19.3

Idle
Ethernet

Driver
Interrupt
Handling

Libc Globus Oprofile IDE File I/O
Rest of
Kernel

Fig. 1. GridFTP Server CPU Characteristics.

memory resulting in low CPU cost for writes to server. CPU is used to transfer
output packets to the NIC resulting in high cost of read from the server. NIC
with capability to DMA the output packets along with a driver capable of using
that feature would reduce server read load considerably.

In the Libc, 65% of the time is spent in the getc function. The IDE disk has a
greater overhead on reads compared to writes. Tuning the disk elevator algorithm
may help here. The file I/O part includes the time spent in the filesystem. It is
higher for writes because of the need for block allocation during writes. The rest
of the kernel time is spent mostly for TCP/IP, packet scheduling, memory-copy,
kmalloc and kfree.

3.2 NeST

Figure 2 shows the NeST server CPU profile when a single local area client
reads/writes a set of 100 MB files using the chirp protocol. The read and write
clients achieved a transfer rate of 7.49 MBPS and 5.5 MBPS respectively.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

P
er

ce
n

ta
g

e
o

f
S

er
ve

r
C

P
U

Read From NeST 12.5 44.2 10.2 10.4 1.1 3.5 3.0 2.1 12.9

Write To NeST 57.7 1.0 4.3 12.6 6.7 3.7 0.3 1.7 12.0

Idle
Ethernet

Driver
Interrupt
Handling

Libc NeST Oprofile IDE File I/O
Rest of
Kernel

Fig. 2. NeST Server CPU Characteristics.

4 George Kola, Tevfik Kosar and Miron Livny

NeST server has a 16% higher read transfer rate and a 30% lower write
transfer rate compared to GridFTP server. The lower performance of writes to
NeST server is because of the space reservation feature called ’Lots’. Before each
write, NeST server verifies that the client has not exceeded the storage allocation,
and at the end of write, it updates this meta-data persistently. This causes
the slowdown. NeST allows turning off ’Lots’ and doing that makes the write
performance close to that of GridFTP server. This shows that space reservation
while being a useful feature comes with a certain overhead.

4 Effect of Protocol Parameters

GridFTP allows us to use different block-sizes and multiple parallel streams.
Further, clients can concurrently transfer multiple files to/from the server. We
studied the effect of the above parameters and concurrency on transfer rate and
CPU utilization.

 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55

 10 20 30 40 50 60

S
er

ve
r C

P
U

 L
oa

d
(%

)

No of Parallel Streams

a) Server Load vs Parallelism
Write to Server

1MB
4MB

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10 20 30 40 50 60

Tr
an

sf
er

 R
at

e
(M

B
/s

)

No of Parallel Streams

b) Tranfer Rate vs Parallelism
Write to Server

1 MB
4 MB

 300
 350
 400
 450
 500
 550
 600
 650
 700
 750

 10 20 30 40 50 60

L2
 D

at
a

TL
B

 M
is

se
s

No of Parallel Streams

c) L2 DTLB Misses vs Parallelism
Write to Server

1MB
4MB

 5.6
 5.8

 6
 6.2
 6.4
 6.6
 6.8

 7
 7.2
 7.4
 7.6

 10 20 30 40 50 60

S
er

ve
r L

oa
d

pe
r M

B
P

S

No of Parallel Streams

d) Server Load per MBPS vs Parallelism
Write to Server

1MB
4MB

 50

 55

 60

 65

 70

 75

 10 20 30 40 50 60

S
er

ve
r C

P
U

 L
oa

d
(%

)

No of Parallel Streams

f) Server Load vs Parallelism
Read From Server

1 MB
4 MB

 7.4
 7.6
 7.8

 8
 8.2
 8.4
 8.6
 8.8

 9
 9.2
 9.4

 10 20 30 40 50 60

Tr
an

sf
er

 R
at

e
(M

B
/s

)

No of Parallel Streams

e) Tranfer Rate vs Parallelism
Read from Server

1MB
4MB

Fig. 3. The effect of block size and the number of parallel streams on GridFTP server
load, transfer rate, and TLB misses.

Profiling Grid Data Transfer Protocols and Servers 5

The effect of using different block-sizes and parallelism while writing to the
moderate GridFTP server is shown in Fig. 3. Interestingly, the server load drops
and the transfer rate increases as we move from one stream to two streams. We
repeated the experiment 20 times and got the same results. We analyzed further
and decided to look at the Translation Look-Aside Buffer(TLB) misses. TLB
is a cache that speeds up translating virtual addresses to physical addresses
in the processor. As seen in Fig. 3c, the L2 Data TLB misses drops as the
parallelism is increased from one to two. The drop in L2 DTLB misses explains
the simultaneous decrease in server load and increase in transfer rate.

We went a step further and tried to find out what was causing the reduction
in L2 DTLB misses and found that the Pentium processor family supports a
large page size of 4 MB in addition to the normal page size of 4 KB. For data
servers, using the large pages would be greatly beneficial. Unfortunately, the
Linux kernel at present does not allow application to request such jumbo pages,
but internally the kernel can use these large pages. We found that the internal
kernel usage of jumbo 4 MB pages during use of parallel streams causes the drop
in TLB misses. We also found that using a block size of 4 MB did not make the
kernel use the jumbo page internally.

We tried the experiment with different machines and found that they had
a different parallelism TLB miss graph. The variance in TLB misses was quite
small till 10 parallel streams and starts rising after wards. Another interesting
thing we found was that the TLB miss graph of a machine at different times
was similar. At present, it appears that the Linux kernel usage of large pages
internally depends mostly on the machine configuration. This requires a more
thorough analysis.

Figure 3d shows the server load per MBPS transfer rate. Data movers may
want to lower server CPU load per unit transfer rate and this graphs shows how
they can use parallelism to achieve this.

The effect of block size when reading from the server is shown in Fig. 3e
and 3f. We find that the optimal parallelism for reading from the server is dif-
ferent from that used to write to it.

We have studied the effects of different concurrency and parallelism levels on
the transfer rate and CPU utilization. This study was done using the powerful
server and the effect on write to server is shown in Fig. 4.

We observed that increasing the number of concurrent files being transferred
results in a higher transfer rate compared to increasing the number of parallel
streams (Fig. 4a and 4b). This is the result of multiple transfers being able
to saturate the bandwidth better than single transfer with multiple streams.
In wide area, both increasing the level of concurrency and parallelism improve
the performance considerably (Fig. 4b). Whereas in the local area both have
very little positive impact on the performance, and even cause a decrease in the
transfer rate for slightly high concurrency and parallelism levels (Fig. 4a). As
the file size increases, the impact of parallelism level on transfer rate increases
as well (Fig. 4c). This study shows that increased parallelism or concurrency
level does not necessarily result in better performance, but depends on many

6 George Kola, Tevfik Kosar and Miron Livny

 4

 6

 8

 10

 12

 14

 16

 5 10 15 20 25 30

Tr
an

sf
er

 ra
te

 (M
B

/s
)

Level of Parallelism/Concurrency

a) Transfer Rate vs Parallelism/Concurrency
Local Area

concurrent transfers
parallel streams

 2

 4

 6

 8

 10

 12

 14

 16

 5 10 15 20 25 30

Tr
an

sf
er

 R
at

e
(M

B
/s

)

Level of Parallelism/Concurrency

b) Transfer Rate vs Parallelism/Concurrency
Wide Area

concurrent transfers
parallel streams

 4

 6

 8

 10

 12

 14

 16

 5 10 15 20 25 30

Tr
an

sf
er

 R
at

e
(M

B
/s

)

Level of Parallelism

c) Transfer Rate vs Parallelism
Local Area

100MB files
1GB files

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

Tr
an

sf
er

 R
at

e
(M

B
/s

)
Level of Parallelism

d) Transfer Rate vs Parallelism
Wide Area

concurrency = 1
concurrency = 2
concurrency = 4

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 5 10 15 20 25 30

C
P

U
 U

til
iz

at
io

n
(%

)

Level of Parallelism/Concurrency

e) CPU Utilization vs Parallelism/Concurrency
GridFTP Server

concurrent transfers
parallel streams

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 5 10 15 20 25 30

C
P

U
 U

til
iz

at
io

n
(%

)

Level of Parallelism/Concurrency

f) CPU Utilization vs Parallelism/Concurrency
GridFTP Client

concurrent transfers
parallel streams

Fig. 4. The effect of concurrency and parallelism levels on the transfer rate and CPU
utilization during write operations to the GridFTP server.

parameters. The users should select the correct parallelism or concurrency level
specific to their settings.

Increasing the concurrency level also results in a higher load on the server
(Fig. 4e), whereas increasing the number of parallel streams decreases server
CPU utilization. On the client side, both increasing the concurrency and par-
allelism levels cause an increase in the CPU utilization of the client machine
(Fig. 4f). We believe that using a combination of concurrency and parallelism
can result in higher performance than using parallelism only or concurrency only
(Fig. 4d). It can also help in achieving the optimum transfer rate by causing lower
load to the server.

5 Related Work

CPU, memory and I/O characteristics of commercial and scientific workloads
have been well studied [9] [10] [11] [12]. However, grid storage servers and data
transfer protocols have not been profiled and characterized in detail.

Profiling Grid Data Transfer Protocols and Servers 7

Networked Application Logger (NetLogger) [13] toolkit enables distributed
applications to precisely log critical events and thereby helps to identify sys-
tem bottlenecks. It requires application instrumentation, which is difficult for
complex and binary-only applications. It cannot be used to log frequent short
events and kernel operations. The instrumentation may change the behavior of
the program. Since, we wanted to perform a full system characterization that
shows the time spent in kernel, we could not use NetLogger.

Vazhkudai et. al. [14] instrumented GridFTP [4] to log performance informa-
tion for every file transfer and used it to predict the behavior of future transfers.
They found that disk I/O takes up to 30% of the total transfer time and using
disk I/O data improves end-to-end grid data transfer time prediction accuracy
by up to 4% [15]. Our profiling gives a more complete picture of system perfor-
mance and we believe that this information can be used to make more accurate
predictions.

Silberstein et. al. [16] analyzed the effect of file sizes on the performance
of local and wide-area GridFTP transfers and found that files sizes should be
at least 10 MB for slow wide-area connections and 20 MB for fast local-area
connection in order to achieve 90% of optimal performance, and small files do
not benefit from multiple streams because of increased overhead of managing the
streams. Our profiling work would help people find values for other parameters
to achieve close to optimal performance.

6 Conclusion

In this work, we have done a full system profile of GridFTP and NeST, two
widely used data access and storage servers and detailed how time is spent in
these servers.

We have characterized the effect of concurrency and GridFTP protocol pa-
rameters block size and parallelism on data transfer rate and server CPU uti-
lization. We have made clear the trade-off between single client performance
and server load and shown how client performance can be increased and server
load decreased at the same time and explained the reason behind this. This al-
lows users to configure and optimize their systems for better end-to-end transfer
performance and higher throughput.

We are planning to analyze our profiling data further in order to find bet-
ter correlations between different parameters. This will help us to provide more
useful information to users helping them to perform more sophisticated config-
uration and optimization.

Finally, we want to make our profiling dynamic and want to design and im-
plement a feedback mechanism between our profiling model and higher level data
movement schedulers like Stork [17]. This would allow systems to dynamically
increase their knowledge, and enable schedulers to make intelligent scheduling
decisions based on analysis of dynamically collected profiler data.

8 George Kola, Tevfik Kosar and Miron Livny

References

1. Sagal, B.: Grid Computing: The European DataGrid Project. In: IEEE Nuclear
Science Symposium and Medical Imaging Conference, Lyon, France (2000)

2. CMS: The Compact Muon Solenoid Project. http://cmsinfo. cern.ch/ (2004)
3. LIGO: Laser Interferometer Gravitational Wave Observatory.

http://www.ligo.caltech.edu/ (2003)
4. Allcock, B., Bester, J., Bresnahan, J., Chervenak, A., Foster, I., Kesselman, C.,

Meder, S., Nefedova, V., Quesnel, D., Tuecke, S.: Secure, efficient data transport
and replica management for high-performance data-intensive computing. In: IEEE
Mass Storage Conference, San Diego, CA (2001)

5. Bent, J., Venkataramani, V., LeRoy, N., Roy, A., Stanley, J., Arpaci-Dusseau, A.C.,
Arpaci-Dusseau, R.H., Livny, M.: Flexibility, manageability, and performance in a
Grid storage appliance. In: Proceedings of the Eleventh IEEE Symposium on High
Performance Distributed Computing (HPDC11), Edinburgh, Scotland (2002)

6. Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., Lyon, B.: Design and imple-
mentation of the Sun Network Filesystem. In: Proc. Summer 1985 USENIX Conf.,
Portland OR (USA) (1985) 119–130

7. Oprofile: A System Wide Profiler for Linux. http://oprofile.sourceforge.net (2003)
8. Anderson, J.M., Berc, L.M., Deanand, J., Ghemawat, S., Henzinger, M.R., Leung,

S.A., Sites, R.L., Vandevoorde, M.T., Waldspurgerand, C.A., Weihl, W.E.: Con-
tinuous profiling: Where have all the cycles gone? In: Proceedings of the sixteenth
ACM symposium on Operating systems principles. (1997)

9. Barroso, L., Gharachorloo, K., Bugnion, E.: Memory system characterization of
commercial workloads. In: Proceedings of the International Symposium on Com-
puter Architecture. (1998)

10. Lee, D., Crowley, P., Bear, J., Anderson, T., Bershad, B.: Execution characteristics
of desktop applications on Windows NT. In: Proceedings of the 25th International
Symposium on Computer Architecture. (1998)

11. Crandall, P., Aydt, R., Chien, A., Reed, D.: Input/output characteristics of scalable
parallel applications. In: Proceedings of the IEEE/ACM Conference of Supercom-
puting, San Diego, CA (1995)

12. Kuo, S., Winslett, M., Cho, Y., Lee, J., Y.Chen: Efficient input and output for
scientific simulations. In: Proceedings of I/O in PArallel and Distributed Systems.
(1999)

13. Tierney, B., Gunter, D.: NetLogger: A toolkit for distributed system performance
tuning and debugging. Technical Report LBNL-51276, LBNL (2002)

14. Vazhkudai, S., Schopf, J.M., Foster, I.: Predicting the performance of wide area
data transfers. In: In Proceedings of the 16th Int. Parallel and Distributed Pro-
cessing Symposium. (2002)

15. Vazhkudai, S., Schopf, J.M.: Using disk throughput data in predictions of end-to-
end grid data transfers. In: Proceedings of the third International Workshop on
Grid Computing, Baltimore, MD (2002)

16. Silberstein, M., Factor, M., Lorenz, D.: Dynamo - directory, net archiver and
mover. In: Proceedings of the third International Workshop on Grid Computing,
Baltimore, MD (2002)

17. Kosar, T., Livny, M.: Stork: Making Data Placement a First Class Citizen in
the Grid. In: Proceedings of the 24th Int. Conference on Distributed Computing
Systems, Tokyo, Japan (2004)

