

AZURE GAHP SERVER
Prerequisites and installation

Table of Contents

Setup and install prerequisites for GAHP	2
Python installation	2
Linux	2
Windows	2
Installation of pip	3
Linux	3
Windows	3
Azure SDK for Python	4
Linux or Windows	4
Install the full Azure SDK	4
Install specific modules of the Azure SDK	4
Minimum supported version	4
Check modules version	5
Upgrade a module	5
Service Principal for GAHP and Key Vault	6
Setup for GAHP Key Vault functionality	7
Assign permissions to service principal for GAHP key vault functionality	7
Shell script to download secret post deployment	12
Setup of Deletion Job functionality for GAHP	13
Azure Automation Account for GAHP	13
Create a standalone Automation account using Azure portal	14
Create a runbook in Azure Automation using Azure portal	19
Publish a new PowerShell runbook	24
Create a WebHook using Azure portal to automate the runbook	26
Setup AppSettings.txt file	29
GAHP Solution Package	31

[bookmark: _Toc492378135]Setup and install prerequisites for GAHP
As GAHP is a Python application, it is platform independent so it can work with Linux and Windows.
Below are the steps to setup, configure, and install the software prerequisites in different platforms (Linux and Windows).
We need pip to install a bundle of all the client libraries. This will download the packages from the Python Package Index (PyPI).
You may need administrator rights to perform the installation:
[bookmark: _Toc492378136]Python installation
[bookmark: _Toc492378137]Linux
1. Open terminal using Putty or SSH.
2. Check for current installation of Python by running following command.
python --version
3. If not installed, run one of the following commands.
a. Ubuntu or Debian distribution
sudo apt-get install python
b. Red Hat distribution like Fedora, CentOS
yum install -y python
4. Verify the installation using the following command.
python --version
[bookmark: _Toc492378138]Windows
1. Open a command prompt.
[image:]
2. Check for current installation of Python by running the following command.
python –-version
[image:]
3. If not installed, download the Python installer from its official website. https://www.python.org/downloads/
4. Run the Python installer.
5. Verify the installation using following command.
python –-version
[bookmark: _Toc483477883][bookmark: _Toc492378139]Installation of pip
[bookmark: _Toc483477884][bookmark: _Toc492378140]Linux
1. Open a terminal and run the following command to check whether pip is installed or not.
pip --version
1. If pip is not installed, run one of the following commands.
a. Ubuntu or any Debian distribution
sudo apt-get install python-dev libxml2-dev libxslt-dev libssl-dev
b. Red Hat distributions like Fedora or CentOS
sudo yum install -y python-devel python-lxml openssl-devel gcc libffi libffi-devel
2. Once the tools above are successfully installed, run the following command to get pip, which will be used to install Azure SDK for Python.
python get-pip.py
3. Verify that pip is installed using the following command.
pip --version
[bookmark: _Toc492378141]Windows
2. Open a command prompt and run the following to check whether pip is installed or not.
pip --version
3. If pip is not installed, download the “get-pip.py” file from the following link.
https://bootstrap.pypa.io/get-pip.py
4. In the command prompt navigate to the folder where the “get-pip.py” file was saved.
5. Run the following command to install pip which will be used to install Azure SDK for Python.
python get-pip.py
6. Verify that pip is installed using the following command.
pip --version

[bookmark: _Toc492378142]Azure SDK for Python
[bookmark: _Toc492378143]Linux or Windows
The GAHP server uses the following Azure SDK, so only these need to be installed. However, all the modules of the SDK can be installed.
· azure-common-credentials
· azure-mgmt-compute
· azure-mgmt-resource
· azure-mgmt-storage
· azure-mgmt-network
· azure-mgmt-scheduler
· azure-storage
· azure-mgmt-keyvault
[bookmark: _Toc492378144]Install the full Azure SDK
Install all the modules of Azure SDK for Python using following command.
Preview release:
pip install --pre azure
Specific version:
pip install azure==2.0.0rc6
pip install azure-mgmt-compute==2.0.0
[bookmark: _Toc492378145]Install specific modules of the Azure SDK
· azure-common-credentials
· azure-mgmt-compute
· azure-mgmt-resource
· azure-mgmt-storage
· azure-mgmt-network
· azure-mgmt-scheduler
· azure-storage
· azure-mgmt-keyvault

[bookmark: _Toc492378146]Minimum supported version
· azure-mgmt-compute – 2.0.0
· azure-mgmt-scheduler – 1.1.2
· azure-mgmt-keyvault – 0.31.0

[bookmark: _Toc492378147]Check modules version
The following command is used to check installed version of the modules:
pip freeze
[image:]
[bookmark: _Toc492378148]Upgrade a module
Uninstalling and then installing the module will upgrade that module.
pip uninstall azure-mgmt-compute
pip install azure-mgmt-compute

[bookmark: _Service_principal_for][bookmark: _Toc492378149]Service Principal for GAHP and Key Vault
The GAHP server requires an Azure Active Directory (Azure AD) application and a service principal for silent login to access and create Azure artifacts. Create an Azure AD application and service principal by following the steps outlined at:-
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-create-service-principal-portal
The application must of type Web app/API.
After creating a service principal follow the additional steps to obtain the following values that will be used with the GAHP:
· Application ID
· Authentication Key
· [bookmark: _Setup_for_GAHP]Tenant ID

[bookmark: _Setup_for_GAHP_1][bookmark: _Toc492378150]Setup for GAHP Key Vault functionality
[bookmark: _Toc492378151]Assign permissions to service principal for GAHP key vault functionality
[bookmark: _Azure_Automation_with]Follow the following outlined steps to assign permission to service principal created in above section.
1. Sign in to the Azure portal with an account that is a global administrator of the Azure AD as only global administrator can provide required permissions.
2. In the left navigation pane, select Azure Active Directory.
[image:]
3. Select App registrations navigation menu option.
[image:]
4. Search using name of the service principal and select the service principal.
[image:]
5. Select All settings to open settings pane.
[image:]

6. In the settings pane, select Required permissions and select Add.
[image:]
7. In the Add API access pane, click Select an API, select Windows Azure Active Directory API and click Select button.
[image:]

8. Click Select permissions in the Add API access pane, select following permissions and then click Select button:
a. Read and write directory data (Application permissions)
b. Read and write all groups. (Delegated permissions)
[image:]
9. Select Add to again open Add API access pane.
[image:]

10. In the Add API access pane, click Select an API, select Microsoft Graph and click Select button.
[image:]
11. Click Select permissions in the Add API access pane, Select following permissions and click Select button: (Both Application and Delegated permissions)
a. Read and write directory data.
b. Read and write all groups.
[image:]

12. Select Grant Permissions and press yes to confirm.
[image:]
13. It may take some time to update the permissions of a service principal.
[bookmark: _Shell_script_to][bookmark: _Toc492378152]Shell script to download secret post deployment
Upload following shell script to a private/public repository like GitHub and save that URL. If required, remove the .txt extension.

This shell script enables GAHP to use key vault. It is used for the post deployment configuration of virtual machine instances in virtual machine scale sets.

[bookmark: _Toc492378153]Setup of Deletion Job functionality for GAHP
[bookmark: _Toc489868426][bookmark: _Toc492378154]Azure Automation Account for GAHP
Microsoft Azure Automation provides a way for users to automate the manual, long-running, error-prone, and frequently repeated tasks that are commonly performed in a cloud and enterprise environment. It saves time and increases the reliability of regular administrative tasks and even schedules them to be automatically performed at regular intervals. You can automate processes using runbooks or automate configuration management using Desired State Configuration.
All the automation tasks you perform against resources using the Azure cmdlets in Azure Automation authenticate to Azure using Azure AD organizational identity credential-based authentication. An Automation account is separate from the account you use to sign in to the portal to configure and use Azure resources.
The Automation resources for each Automation account are associated with a single Azure region, but Automation accounts can manage all the resources in your subscription. Create Automation accounts in different regions if you have policies that require data and resources to be isolated to a specific region.
Note
Automation accounts, and the resources they contain that are created in the Azure portal, cannot be accessed in the Azure classic portal. If you want to manage these accounts or their resources with Windows PowerShell, you must use the Azure Resource Manager modules.
When you create an Automation account in the Azure portal, you automatically create two authentication entities:
· A Run As account. This account creates a service principal in Azure AD and a certificate. It also assigns the Contributor role-based access control (RBAC), which manages Resource Manager resources by using runbooks.
· [bookmark: _Hlk484786212]A Classic Run As account. This account uploads a management certificate, which is used to manage classic resources by using runbooks.

[bookmark: _Toc489868427][bookmark: _Toc492378155]Create a standalone Automation account using Azure portal
This topic shows you how to create an Automation account from the Azure portal if you want to evaluate and learn Azure Automation without including the additional management solutions or integration with OMS Log Analytics to provide advanced monitoring of runbook jobs. You can add those management solutions or integrate with Log Analytics at any point in the future. With the Automation account, you can authenticate runbooks managing resources in either Azure Resource Manager or Azure classic deployment.
When you create an Automation account in the Azure portal, it automatically creates:
· Run As account, which creates a new service principal in Azure AD, a certificate, and assigns the Contributor RBAC, which is used to manage Resource Manager resources using runbooks.
· Classic Run As account by uploading a management certificate, which is used to manage classic resources using runbooks.
This simplifies the process for you and helps you quickly start building and deploying runbooks to support your automation needs.

Perform the following steps to create an Azure Automation account in the Azure portal.
Note
To create an Automation account, you must be a member of the Service Admins role or co-administrator of the subscription that is granting access to the subscription. You must also be added as a user to that subscription's default Active Directory instance. The account does not need to be assigned a privileged role.
If you are not a member of the subscription’s Active Directory instance before you are added to the co-administrator role of the subscription, you are added to Active Directory as a guest. In this instance, you receive a “You do not have permissions to create…” warning on the Add Automation Account blade.
Users who were added to the co-administrator role first can be removed from the subscription's Active Directory instance and re-added to make them a full User in Active Directory. To verify this situation from the Azure Active Directory pane in the Azure portal by selecting Users and groups, selecting All users and, after you select the specific user, selecting Profile. The value of the User type attribute under the user’s profile should not equal Guest.
1. Sign in to the Azure portal with an account which is a member of the Subscription Admins role and co-administrator of the subscription.
2. Select New.
[image: Select New option in Azure portal]
3. Search for Automation and press enter. In the search results select Automation.
[image:]
4. In the Automation Accounts blade, select Create.
[image:]
Note
If you see the following warning in the Add Automation Account blade, this is because your account is not a member of the Subscription Admins role and co-admin of the subscription.
[image:]
5. In the Add Automation Account blade, in the Name box enter a name for your new Automation account.
[image:]
6. If you have more than one subscription, specify one for the new account, a new or existing Resource group and an Azure data center Location.
7. Verify the value Yes is selected for the Create Azure Run As account option, and select the Create button.
Note
If you choose to not create the Run As account by selecting the option No, you are presented with a warning message in the Add Automation Account blade. While the account is created in the Azure portal, it will not have a corresponding authentication identity within your classic or Resource Manager subscription directory service and therefore, no access to resources in your subscription. This prevents any runbooks referencing this account from being able to authenticate and perform tasks against resources in those deployment models.
[image:]
When the service principal is not created the Contributor role will not be assigned.
8. During the Automation account creation, the progress is tracked under Notifications from the menu.

[bookmark: _Toc489868428][bookmark: _Toc492378156][bookmark: _Create_a_PowerShell]Create a runbook in Azure Automation using Azure portal
PowerShell runbooks are based on Windows PowerShell. The code of the runbook can be edited using the text editor in the Azure portal.
Perform the following steps to create a runbook in the Azure portal.
1. In the Azure portal, open your Automation account.
2. Select Runbooks tile to open the list of runbooks.
[image:]

3. Select Add a runbook button and then Import an existing new runbook. Some runbooks are created automatically with your Azure Automation account.
[image:]
[image:]

4. [bookmark: _Ref484801377]In the Runbook file, select the import icon to import following attached file. If required, remove the .txt extension.

[image:]
5. If the Name field is enabled then it can be changed. The runbook name must start with a letter and can have letters, numbers, underscores, and dashes.

6. The Runbook type will be automatically selected as PowerShell.
[image:]
7. Select Create to create the runbook.

8. The new runbook will appear in the list of runbooks for the Automation Account. The newly imported runbook has Authoring Status as New.
[image:]
9. Publish the runbook before running it.

[bookmark: _Toc489868430][bookmark: _Toc492378157]Publish a new PowerShell runbook
When a runbook is imported or created, publish it before it can be run. Each runbook in Automation has a Draft and a Published version. Only the Published version can be run, and only the Draft version can be edited. The Published version is unaffected by any change in the Draft version. When the Draft version should be made available, then publish it which overwrites the Published version with the Draft version.
Perform the following steps to publish new runbook in the Azure portal.
1. Open the new runbook in the Azure portal.
[image:]
2. Select the Edit button.
[image:]

3. Select Publish and then Yes to the verification message.
[bookmark: _Create_a_webhook][image:]

[bookmark: _Create_a_webhook_1][bookmark: _Toc489868431][bookmark: _Toc492378158]Create a WebHook using Azure portal to automate the runbook
A webhook is used to start a runbook in Azure Automation through a single HTTP request. This allows GAHP server to start runbook using the Azure Automation API.
A webhook can define values for runbook parameters which are used when the runbook is started by that webhook. The webhook must include values of mandatory parameters for the runbook and may include values for optional parameters. A parameter value configured in a webhook can be modified even after creating the webhook.
When a client starts a runbook using a webhook, it cannot override the parameter values defined in the webhook. To receive data from the client, the runbook can accept a single parameter called $WebhookData of type [object] which will contain data that client includes in the POST request.
Perform the following steps to create a webhook in the Azure portal.
1. From the Runbooks blade in the Azure portal, select the runbook that the webhook will start.
2. Select Webhook at the top of the blade to open the Add Webhook blade.
[image:]
3. Select Create new webhook to open the Create webhook blade.
[image:]
4. Specify a Name, Expiration Date for the webhook and if it should be enabled.

5. Copy the URL of the webhook then save it in a safe place. Once you create the webhook, you cannot retrieve the URL again. Select OK for the next step.
[image:]
6. Select Configure parameters and run settings to provide value for the runbook parameter.
[image:]

7. Set WEBHOOKDATA parameter value to [EmptyString] as shown in the following image.
[image:]
8. Select OK to complete the setup of webhook.
9. Select Create to create the webhook.

[bookmark: _Toc492378159]Setup AppSettings.txt file
The GAHP server creates a scheduler job to execute the PowerShell runbook to delete a virtual machine scale set. It creates a scheduler job collection that hosts a cleaner job and deletion jobs. The cleaner job frequently monitors all the jobs in the collection and delete them once they are complete.
The GAHP server user need to setup AppSettings.txt file with required information for deletion job and key vault functionality.
Open the AppSettings.txt in a text editor and add following information.
1. Application ID of the service principal created in Azure active directory.
Client_id <Application id>
2. Authentication Key of the service principal.
secret <Authentication key value>
3. Tenant ID of the azure subscription.
tenant_id <Authentication key value>
4. Number of VMs to process in each thread in AZURE_VM_LIST command
max_vm_count_in_thread <number of VMs in a thread>
5. Webhook URL to invoke the PowerShell runbook. Paste the webhook URL copied in the above setup in the below format.
webhook_url <URL>
6. A secure token to authenticate the request to execute the commands in PowerShell runbook. In the format shown in following image, add the token which is used for authentication in the Runbook PowerShell script, the script which was used in the PowerShell script to create the Runbook in in step 4 of ”Create a runbook in Azure Automation using Azure portal.”
token <value>
So, the token value should be same in both files, AppSettings.txt and the PowerShell scripts.
[image:]
7. Resource group name of scheduler job collection.
jobs_rg <Resource group name>
8. Scheduler job collection name where all the scheduler jobs will be created.
job_collection <Scheduler job collection name>
9. SKU for the scheduler job collection. Following values are allowed:
a. Free
b. Standard
c. P10Premium
d. P20Premium
job_collection_sku <sku value>
10. Frequency of the cleaner job. Following values are allowed:
a. Minute
b. Hour
c. Day
d. Week
e. Month
job_frequency_type <frequency type>
11. Interval value for the Job_frequency_type (number value).
job_interval <value>
12. Name of the Azure AD group where all the virtual machine scale sets will be added for key vault functionality of GAHP.
ad_group_name <Azure AD group name>
13. key_vault_setup_script_url <URL from above setup of the shell script to setup the artifacts for downloading the secret on VM>
key_vault_setup_script_url <URL>
Configured AppSettings.txt file should look like below.
[image:]

[bookmark: _Toc492378160]GAHP Solution Package
The GAHP solution package contains the following files:
[image:]
· AppSettings.txt
· AzureGAHPServer.py
· User will run/execute this Python file using Python command to start execution of GAHP
· AzureGAHPLib.py
· This Python file contains the main logic of GAHP for each command.
· AzureGAHPLibUsageSamples.py
· This Python file is used to create dummy VM using hard-coded values.
· CommandSamplesAndNotes.txt
· This text file includes sample commands and rules for the development purposes.
· SSHKey.txt, SSHKeyFilePrivateKey.txt and SSHKeyFilePublicKey.txt

image3.png
= Run

=)

fdf

Open:

Type the name of a program, folder, document, or Internet
resource, and Windows will open it for you.

-

T e

image4.png
Command Prompt

i crosoft Windows [Version 6.1.7601]
copyrignt (c) 2669 Microsoft Corporation. ALl rights reserved

c:\Users\superuserspython --version

image5.png
[adminuser@htccondortestvm AzureGRHP]S pip freeze
adal==0.4.5

alabaster==0.7.9

anaconda-client==1.6.0

anaconda-navigator==1.5

anaconda-project==0.4.1

astroid=1.4.9

astropy=1.3

azure==2.0.0zcs

azure-batch==0.30.0zcS

azure-common==1.1.4

azure-graphrbac==0.30.0xcs

azure-mgme==0.30.0zrcs
azure-mgmt-authorization:
azure-mgme-batch==0.30.0zcS
azure-mgmt-cdn==0.30.0zrcs
azure-mgme-cognitiveservice

.30.0zc5

.30.0zc5

azure-mgme-network==0.30.0zcs
azure-mgme-notificationhubs==0.30.0rcS

image6.png
Microsoft Azure

4-

R sl databases

A virtual machines (class...

Cloud services (classic)

@ Azure Active Directory

B Subscriptions.

> Virtual networks

image7.png
i i (de

- s e (default

Azure Active Directory

O Overview

& Quicksstart

#®

groups

image8.png
(default directory) - App registrations

o . & (default directory) - App registrations

[—

w5 K Troubleshoot

erged applications, plea:
L] gone v
@
oispLaY NAME APPLCATION TYPE APPLICATION 10
~ . Gahp W e

image9.png
(default directory) - App registrations > Gahp

Gahp # 0 x

Registered 2

Vanifest @ Delete

image10.png
(default directory) - App registrations > Gahp > Settings > Required permissions

Settings B X Required permissions

> Grant Permissions

= e § - AppucaTON P o
a >
@ >
& Owners >
|
F AP AcCESS i
Reauired permissions >

Keys >

image11.png
« Required permissions > Add APlaccess > Selectan APl

Add APl access a x Select an API

=+ her applic th Serv e
ctan API >

= Windows Azure Aftive Directom

2

@

)

crosoft Visuals ne)

image12.png
Required permis Enable Access

1 seamen v | AerUCATION PeRMISSIONS ~ Requires oM
Windows Azure Active Director..

Read directory dits © ves

a Read and write domsins 0 ve

D selectpermisions S

° 1role, 1 scope V| Read and writedirctory data O ves

® Read and write devices 0 ve

- Resd ol hidden memberships © ver
Mansge spps that this app crestes or owns © ver

e

image13.png
« Gahp > Settings > Required permissions

Required permissions

o Grant Permissions

APPLICATION PERMI... DELEGATED PERMIS.

e Directory (Microsoft Azure Act,

image14.png
« Required permissions > Add APlaccess > Selectan APl

Add APl access a x Select an API

Select an AP
Microsoft G

(MicrosoftVisu:

/

image15.png
ired perm

Add APl access

1 Select an API
Microsoft Graph

D sesctpemisions
2 roles 0 scope

W] APPLCATION peRMISSIONS ~ requiRes Aomin
Read al identity isk event information O ves
Read and write al users' ul profiles O ves
Read all users fll profies O ves
Read and write devices O ves
V] Read and wite directory data O ve
Read directory data O ves

/| Rezd and write all groups

image16.png
« Gahp > Settings > Required permissions

Required permissions

0 Grant Permissions.

APPLICATION PERMI... DELEGATED PERMIS.

e Directory (MicrosoftA:

image17.emf
downloadsecret.sh. txt

downloadsecret.sh.txt
#!/bin/bash

if [[$(id -u) -ne 0]] ; then

 echo "$(basename $0) must be run as root"

 exit 1

fi

if [$# -ne 3]; then

 echo "Usage: $(basename $0) <Keyvault Name> <Secret Name> <Tenent Id>"

 exit 1

fi

keyvault_name=$1

secret_name=$2

tenant_id=$3

temp=$(mktemp -d -t download_secret_tmp_XXXX) || exit

echo "Using below temporary location:"

echo $temp

distro_type=""

get_distro_type()

{

 release_info==$(cat /etc/*-release)

 if [[$(echo "$release_info" | grep 'Red Hat') != ""]]; then

 distro_type="redhat";

 elif [[$(echo "$release_info" | grep 'CentOS') != ""]] ; then

 distro_type="centos";

 elif [[$(echo "$release_info" | grep 'Ubuntu') != ""]] ; then

 distro_type="ubuntu";

 elif [[$(echo "$release_info" | grep 'Scientfic Linux') != ""]]; then

 distro_type="centos";

 fi;

}

get_status_of_last_execution()

{

 if [$? -eq 0]; then

 echo "complete"

 else

 echo "failed. Please see script-execution.log"

 exit 1

 fi

}

Install jq JSON parser in CentOS or Red Hat

install_jq_redhat_centos()

{

 wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.5/jq-linux64

 chmod +x jq

 cp jq /usr/bin

}

Install jq JSON parser in Ubuntu

install_jq_ubuntu()

{

 sudo apt-get install jq -y

}

Install jq JSON parser

install_jq()

{

 case "$distro_type" in

 "centos" | "redhat")

 install_jq_redhat_centos

 ;;

 "ubuntu")

 install_jq_ubuntu

 ;;

 esac

}

Get access token in JSON format and extract the token value

get_token()

{

 resource="https://vault.azure.net"

 authority="authority=https://login.microsoftonline.com/$tenant_id&resource=$resource"

 localhost_uri="http://localhost:50342/oauth2/token"

 curl -o $temp/token.json --data "$authority" $localhost_uri

 token=$(jq -r '.access_token' $temp/token.json)

}

download_secret()

{

 mkdir -p /root/$keyvault_name

 touch /root/$keyvault_name/$secret_name

 api_version="2016-10-01"

 secret_url="https://$keyvault_name.vault.azure.net/secrets/$secret_name?api-version=$api_version"

 curl -G -H "Authorization: Bearer $token" -o $temp/output.json --url $secret_url

 jq -r 'select(.value != null) | .value' $temp/output.json > /root/$keyvault_name/$secret_name

}

remove_redundant_files()

{

 rm -rf $temp

}

echo "Getting Linux distribution type..."

get_distro_type

echo "Getting Linux distribution type:" $(get_status_of_last_execution)

echo "Checking for jq..."

if ! command -v jq >/dev/null 2>&1

then

 echo "Jq is not installed. Installing jq..."

 install_jq

 echo "Installing jq:" $(get_status_of_last_execution)

else

 echo "jq is already installed"

fi

echo "Checking for jq:" $(get_status_of_last_execution)

jq --version

echo "Getting access token..."

get_token

echo "Getting access token:" $(get_status_of_last_execution)

echo "Downloading secret..."

download_secret

echo "Downloading secret:" $(get_status_of_last_execution)

echo "Deleting redundant files..."

#remove_redundant_files

echo "Deleting redundant files:" $(get_status_of_last_execution)

image18.png
Microsoft Azure New

N#) Resource groups
All resources

© Recent

& App Services

New. o X
| £ search the marketplace] N
MARKETPLACE Seeall
Compute >
Networking >
Storage >

image19.png
B +

& @ @

3

Marketplace

Everything
Compute
Networking
Storage

Web + Mobile
Databases

Data + Analytics

‘Al + Coanitive Services

Ed

X

Everything

Y Filter

[(5 Automation

Results

BB suomaton

€A Chef Automate

PUBLSHER © CATEGORY

Microsoft Developer tools

Microsoft Monitoring + Management

Chef Software,Inc Compute

image20.png
B + |l

@ @8

OOl K 3N 3

L 4

. Automation » 0
ricoon

Create an Automation Account

An Automation Account is 3 container for your Azure Automation resources. t provides a way to
separate your environments or further organize your Automation workflows and resources.

Process automation that simplifies cloud management

‘Azure Automation allows you to automate the creation, deployment, moritoring, and maintenance
of resources in your Azure environment and across external systems, Azure uses a highiy scalable
and reliable workfow exection engine to simplify cloud management. Orchestrate time-consuming
and frequently repeated tasks across Azure and third-party systems.

Integrate into the systems you depend on

‘With Automation, you can connect into any system that exposes an API over typical Intemet
protocols. Azure Automation includes integration into many Azure services, including:

* Web Sites (management)
+ Cloud Services (management)

+ Virtual Machines (management and WinRM support)
+ Storage (management)

+ 5QL Server (management and SQL support)

Need your workflows to integrate into another service? Extend Azure Automation to third-party
solutions simply by importing an existing PowerShell module or writing your own in C# or Windows
Powershell.

image21.png
You do not have permissions to
create an Azure Run As account
(service principal) and grant
Contributor role to the sevice
principal. Please follow the
directions in this document to create:
one with the help of the subscription
admin.

image22.png
Add Automation Account o x

* Name
TestAutomation

* Subscription

Ao oC v

 Resource group ®

O e et

TestResourceGroup v
* Location
Central India v

* Create Azure Run As account @
No

The Run As account feature wil
create a Run As account and a
Classic Run As accountClick here to
lear more about Run As accounts,

Pin to dashboard

image23.png
You have chosen not to create a Run
As Account. Doing so might block
the execution of some runbooks due
tolack of access to required

image24.png
¥4 TestAutomation
o

Automstion Account

5 searcn ctriey)

4 overview
B Activity log

Access control (AM)

& Tags

X Diagnose and solve problems

PROGESS AUTOMATION

Runbooks

&1 Jobs

& Runbooks Gallery

image25.png
TestAutomation - Runbooks
Automstion Account

Search (Ctri=/)

Overview
Activity log
Access control (AM)

Tags

Diagnose and solve problems

Runbooks

Jobs

o Addsrunbook | I Browse galery O Refresn

Search runbooks..

AzureAutomationTutorial
> AzwreAutomationTutorialScript

AzureClassicAutomationTutorial

> AwreClassicAutomationTutoraiScript

AUTHORING STATUS

Published

Published

Published

Published

image26.png
Add Runbook

Quick Create.
Create a new runbook

import
. Import an existing runbook

#

=]

image27.emf
GahpRunbook.ps1. txt

GahpRunbook.ps1.txt
Param

(

 [Parameter (Mandatory = $true)]

 [object] $WebhookData

)

$connectionName = "AzureRunAsConnection"

try

{

 # Get the connection "AzureRunAsConnection "

 $servicePrincipalConnection=Get-AutomationConnection -Name $connectionName

 "Logging in to Azure..."

 Add-AzureRmAccount `

 -ServicePrincipal `

 -TenantId $servicePrincipalConnection.TenantId `

 -ApplicationId $servicePrincipalConnection.ApplicationId `

 -CertificateThumbprint $servicePrincipalConnection.CertificateThumbprint

 "Logging in to Azure AD..."

 Connect-AzureAD `

		-TenantId $servicePrincipalConnection.TenantId `

		-ApplicationId $servicePrincipalConnection.ApplicationId `

		-CertificateThumbprint $servicePrincipalConnection.CertificateThumbprint

}

catch

{

 if (!$servicePrincipalConnection)

 {

 $ErrorMessage = "Connection $connectionName not found."

 throw $ErrorMessage

 } else{

 Write-Error -Message $_.Exception

 throw $_.Exception

 }

}

#Get all the properties from Webhook

if($WebhookData -ne $null)

{

 #Get all the properties from Webhook

 $WebhookData = ConvertFrom-Json -InputObject $WebhookData

 Write-Output ("")

 Write-Output ("WebhookData - $WebhookData")

 Write-Output ("")

 #Get common properties

 $WebhookName = $WebhookData.WebhookName

 $WebhookHeader = $WebhookData.RequestHeader

 $WebhookBody = ConvertFrom-Json -InputObject $WebhookData.RequestBody

 $DateTime = Get-Date

 Write-Output ("Runbook started from Webhook $WebhookName")

 Write-Output ("Runbook started at $DateTime")

 # Conditional information

 $SecureToken = $WebhookBody.SecureToken

 $ExecutionMode = $WebhookBody.ExecutionMode

 Write-Output ("Execution Mode : $ExecutionMode")

 # DeleteResource execution mode

 $ResourceGroupName = $WebhookBody.ResourceGroupName

 $VmssName = $WebhookBody.VmssName

 Write-Output ("Resource group : $ResourceGroupName | VMSS Name : $VmssName")

 $JobResourceGroupName = $WebhookBody.JobResourceGroupName

 $JobCollectionName = $WebhookBody.JobCollection

 Write-Output ("Resource group : $JobResourceGroupName | Job collection : $JobCollectionName")

}

$token = "uu2q3rjf98eru9n3q4ofju934qojfnewijq3ioijef="

if($SecureToken -ne $token)

{

 Write-Output "Token : $SecureToken";

 Write-Output "Unauthorized access to runbook";

 exit;

}

#Function Add-Entity: Adds an employee entity to a table.

function Add-Entity() {

 [CmdletBinding()]

 param(

 $table,

 [String]$PartitionKey,

 [String]$rowKey,

 [Boolean]$isSucceeded

)

 $entity = New-Object -TypeName Microsoft.WindowsAzure.Storage.Table.DynamicTableEntity -ArgumentList $partitionKey, $rowKey

 $entity.Properties.Add("IsSucceeded", $isSucceeded)

 $result = $table.CloudTable.Execute([Microsoft.WindowsAzure.Storage.Table.TableOperation]::Insert($entity))

}

switch($ExecutionMode)

{

 "DeleteResource" {

 try

 {

 $ResourceGroup = Get-AzureRmResourceGroup -name $ResourceGroupName

 if($VmssName -And $ResourceGroup)

 {

 $Resource = Get-AzureRmResource -ResourceName $VmssName -ResourceGroupName $ResourceGroupName

 if($Resource)

 {

 $Message = "Deleting vmss"

 Write-Output ("$Message $Resource.ResourceName")

 $IsResourceDeleted = Remove-AzureRmResource -ResourceId $Resource.ResourceId -Force

 if($IsResourceDeleted -eq "True")

 {

 Write-Output ("$Message $Resource.ResourceName : complete")

 }

 else

 {

 Write-Output ("$Message $Resource.ResourceName : failed")

 }

 }

 }

 ElseIf($ResourceGroup)

 {

 $Message = "Deleting Resource Group"

 Write-Output ("$Message : '$ResourceGroupName'")

 $IsRgDeleted = Remove-AzureRmResourceGroup -Name $ResourceGroupName -Force

 if($IsRgDeleted -eq "True")

 {

 Write-Output ("$Message $ResourceGroupName : complete")

 }

 else

 {

 Write-Output ("$Message $ResourceGroupName : failed")

 }

 }

 }

 catch

 {

 if (!$ResourceGroup)

 {

 $ErrorMessage = "$Message $ResourceGroupName : failed"

 Write-Error -Message $_.Exception

 throw $ErrorMessage

 exit;

 }

 else

 {

 Write-Error -Message $_.Exception

 throw $_.Exception

 exit;

 }

 }

 }

 "DeleteExpiredJobs" {

 #Get all ARM resources from all resource groups

 try

 {

 $ResourceGroup = Get-AzureRmResourceGroup -name $JobResourceGroupName

 if($ResourceGroup)

 {

 $result = Get-AzureRmSchedulerJob -JobCollectionName $JobCollectionName -ResourceGroupName $JobResourceGroupName

 foreach($job in $result)

 {

 if ((get-date) -gt (get-date $job.StartTime) -and ($job.JobName -ne "CleanerJob"))

 {

 Write-Output ("Job $job.JobName is expired (Start time - $job.StartTime UTC)")

 Write-Output ("Deleting $job.JobName job...")

 Remove-AzureRmSchedulerJob -JobCollectionName $JobCollectionName -JobName $job.JobName -ResourceGroupName $JobResourceGroupName

 Write-Output ("Deleted $job.JobName job")

 }

 }

 }

 else

 {

 Write-Output ("Resource Group $JobResourceGroupName not found.")

 }

 }

 catch

 {

 Write-Error -Message $_.Exception

 throw $_.Exception

 exit;

 }

 }

 default {

 Write-Output("No execution mode found in input webhook data.")

 }

}

image28.png
Import o x

Runbook

Select 2 fle smaller than 1 MB to import,

* Runbook file ®
Selecta e w
* Runbook type ®

© Name

Description

image29.png
Import o x

Runbook

 Runbook file ®
Testunbookst Ja

TestRunbookpsT

* Runbook type @

Powershel v
* Name

TestRunbook. v

Description

image30.png
TestAutomation - Runbooks

e,
e & Addsrunbook I Browse galery O Refresn
Search runbooks.
& overview
e AUTHORING STATUS
1 activity log
AsureAutomstionTutorial Pubisnea
% Access control (AM)
. AzureAutomationTutorialScript Published
¢ Tags
AnureClssschutomationTutorial Pubisnea
X Diagnose and solve problems
> AzureClassicAutomationTutorialScript Published

2 TestRunbook

image31.png
TestAutomation - Runbooks

e,
7 oroiig & Addsrunbook I Browse galery O Refresn
Search runbooks.
& overview
e AUTHORING STATUS
1 activity log
AsureAutomstionTutorial Pubisnea
% Access control (AM)
. AzureAutomationTutorialScript Published
¢ Tags
AnureClssschutomationTutorial Pubisnea
X Diagnose and solve problems
> AzureClassicAutomationTutorialScript Published

2 TestRunbook

image32.png
TestRunbook

Runbook

O searcn (ctriey)

S Ovenview
] Activity log
& Tags

P —

RESOURCES

P stat <P view

Essentials A

Resource group
TestResourceGroup.
Account
TestAutomation
Locstion

Central India

Subscription name.
o -c

e

© schedute

image33.png
Hsae

@ Pudisn

» BB CMDLETS

» &% RUNBOOKS

) = ASSETS

Edit PowerShell Runbook

Testhumbook

X Revert to published

® Crecen B Testpane W Fesaback

Param

«

[Parameter (Mandatory = $true)]
[object] $HebhookData

image34.png
TestRunbook
Runbook

Search (Ctri+/) P st <D view & Edit O schedue Webhook

Essentists A
2. ovemew I

Resource group

image35.png
[im] Add Webhook # 0 X

Webhook N
Create new webhook
Parameters and run seftings N

Configure parameters and run settings

image36.png
Create a new webho... # O X

For security, after creating a
webhook ts URL can't be viewed.
Make sure to copy it before pressing
“OK’, and to store it securely Learn

* Name

TestWebhook

* Enabled

No

* Bxpires

2018.06.09

Click to copy
.

st atoratonset | [

image37.png
Parameters # 0
TestRunbook.

Parameters
* WEBHOOKDATA ®

[Emptystring] vl

Run Settings
Run on Azure @

image38.png
T client_id 9%wwien 45 ‘SResourceGroupName = SWebhookBody R
2 secret PvEmAMN Ml S SRR TR kxeE= a6 SResourceName = SiebhookBody .Vssliar
s n 47 SSecureToken = SiebhookBody -SecureT
4 max_yn_count_in_thread 16 a8 Write-Output ("Runbook started from
5 webhook_url a9 Write-Output ("Runbook started at "
https:/7s7events. azure-autonation. net /webhooks2token= | 50 Write-Output ("Resource group : " +
mAaaas some o Scasscomfoasa . o wwid 51 1
© token sUpdrS3cr3TPzzwerd || =2
53 if(sSecureToken -ne Stoken)
s B
55 Write-Output "Unauthorized access;
s6 exit;
57 Ly

image39.png
Co NN

10
1
12
13

[lient_id 93gem o fwoy cm 'y sy imewee (b38
Secret PYERAIS B TR R Uk

tenant_id 728HNN Y Bt B B ib47

max_m_count_in_thread 16

webhook_ur] Rttps://s7events. azure-automation. net/webhooks 2t oken={ ot ol S e e 3

Ry e ————
jobs_rg GahpDev
Job_collection GahpDevic
Job_collection_sku Standard
Job_frequency_type Minute
Job_interval 7
2d_group_name GahpVHsSs

key_vault_setup_script_url htt;

S———

i thubusercontent. com,

R

s /downloadsecret. sh

image40.png
Srms I8
@E-lo-sam| s

Search Solution Explorer (Ctrl=) p

137 Solution 'AzureGAHP' (1 project)

AaureGAHP

3 Python Environments

» References

& Search Paths

B AppSettings.ot

7 AaureGAHPLib.py

a7 AzureGAHPLibUsageSamples.py

27 AzureGAHPServerpy

B CommandSamplesAndNotes.txt

5B SSHKeybt

B) SSHKeyFilePrivateKey.bt

5B SSHKeyFilePublicKey bt

image1.png

image2.png

