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Abstract

The Grid promise is starting to materialize today: large-
scale multi-site infrastructures have grown to assist the
work of scientists from all around the world. This tremen-
dous growth can be sustained and continued only through
a higher quality of the middleware, in terms of deploya-
bility and of correct functionality. A potential solution to
this problem is the adoption of industry practices regard-
ing middleware building and testing. However, it is un-
clear what good build-and-test environments for grid mid-
dleware should look like, and how to use them efficiently. In
this work we address both these problems. First, we study
the characteristics of the NMI build-and-test environment,
which handles millions of testing tasks annually, for major
Grid middleware such as Condor, Globus, VDT, and gLite.
Through the analysis of a system-wide trace covering the
past two years we find the main characteristics of the work-
load, as well as the performance of the system under load.
Second, we propose mechanisms for more efficient test man-
agement and operation, and for resource provisioning and
evaluation. Notably, we propose a generic test optimization
technique that reduces the test time by 95%, while achiev-
ing 93% of the maximum accuracy, under real conditions.

1 Introduction

The Grid world is starting to fulfill the promise of a
world-scale computing infrastructure for the use of the
ever-growing scientific community. Indeed, current sys-
tems such as CERN’s LCG, the EGEE, the NorduGrid, the
TeraGrid, Grid’5000, and the OSG, gather together (tens of)
thousands of resources, and offer similar or better through-
puts when compared with large-scale parallel production
environments [15]. However, the grid paradigm comes with
a high price: the problems of the software, in particular,
those related to deployability and to core functionality, are
much more easily exposed by the dynamicity, the hetero-
geneity, or simply by the sheer scale of the systems.

The middleware problems are already manifesting in

full, with job failure rates in Grids reaching levels from
over 10% in controlled environments [14], or 20-45% in
a mid-large Grid environment (TeraGrid) without using re-
submissions [16], to up to 27% failures, even after 5-10 re-
submissions [10]. Deployment success rates are unknown,
but grids are notoriously difficult to set-up. A potential solu-
tion to the problem of large-scale systems middleware is the
adoption of industry practices regarding building and test-
ing, which in light of the failure situation become equally
important to designing and developing the middleware.

Throughout development, the middleware must be devel-
oped iteratively and incrementally. The middleware needs
to be validated through functionality (unit) tests in an envi-
ronment as close to the target as possible, starting from very
early stages. To mitigate development risks, milestones
must be clearly defined, and at any moment a distribution
package should be available for use (or testing). For all
these middleware development goals, a build-and-test en-
vironment is required. However, it is unclear what a good
build-and-test environment for grid middleware should look
like, and how to use it efficiently (thebuild-and-test prob-
lem).

Our current work is motivated by the build-and-test prob-
lem, which we address as follows. First, we study the
characteristics of the NMI build-and-test environment, lo-
cated at the U. Wisconsin-Madison. The NMI testing fa-
cility handles millions of testing tasks annually, for ar-
guably the largest middleware packages in the Grid and
otherwise large-scale computing world, e.g., Condor [22],
Globus [11], VDT, gLite, BOINC [1], etc. By analyzing
the system-wide trace covering the past two years of the
NMI operation, we show insights into the load arrival pat-
terns, the load structure, and the performance of a build-
and-test environment (Section 3). Then, we propose mech-
anisms for more efficient test management and operation
(Sections 4.1 and 4.2, respectively). Notably, we achieve
with generic optimization techniques an 85% time reduc-
tion at 5% test accuracy cost, for the given workload. Fi-
nally, we present an algorithm and an associate set of tools
for build-and-test environment provisioning and setup.
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Figure 1. Overview of the The NMI Build-and-
Test process for n projects. Only component
c1 of project 1 is detailed.

2 The NMI Build-and-Test Environment
The data used in this work comes from the NMI Build-

and-Test Laboratory [21], located at the University of
Wisconsin-Madison. In this section we describe this en-
vironment, emphasizing on the way it has been designed to
address the challenges of the build-and-test problem.

The NMI Laboratory comprises over 100 physical nodes,
effectively hosting over 40 different platforms (CPU ar-
chitecture, and operating system and version combina-
tions). The Laboratory offers access to its nodes through the
Condor high-throughput distributed batch computing sys-
tem [22]. Working on top of Condor is the NMI middle-
ware, which automates the building and the testing of (dis-
tributed computing) software in a distributed computing en-
vironment.

A Projectis a set of applications (Components) that need
to be built and tested. To build and test an application, users
explicitly define the workflow of build-and-test tasks, and
specify the target platforms on which the workflow is to
be run. The workflow description includes not only the
specific build-and-test tasks, but also the additional steps
that fetch code from existing repositories, and that down-
load, compile, and install external software dependencies,
etc. Workflow tasks have inter-dependencies, and may con-
tain several sub-tasks, which in turn may have precedence
constraints. A workflow can be of types BUILD (related
to building a Component), TEST (testing a Component), or
UNKNOWN (other workflows). ARun is a workflow ex-
ecution (instance), which typically comprises several data
fetch commands, pre-processing tasks, jobs executed on re-
mote hosts (different platforms), and post-processing tasks
(see Figure 1). ATaskis an individual schedulable unit of
a Run. ATest Jobis a Task that is executed for actual test-
ing, and not for the test setup. For example, fetching source
code from the CVS, or the tasks containing sub-tasks are
not Test Jobs. A Task that performs unit testing for a mod-
ule of some Component is a Test Job. Depending on the test

setup preferences, a Run fails if one, several, or all of its
Tasks fail.

The NMI Build and Test software stores the workflow
definition information in a central repository, to ensure
every build or test is reproducible. Build or test runs are dy-
namically deployed to the appropriate computing resources
for execution. Users can view the status of their routines
as they execute on build-and-test resources. The framework
transfers automatically the output produced during the ex-
ecution to a central repository. Authorized users can pause
or remove their routines from the framework at any time.

Currently, the NMI Build-and-Test Laboratory at
U.Wisconsin-Madison serves projects such as: core grid
middleware (e.g., Condor [22], Globus [11]), grid pack-
ages (e.g., VDT1, gLite, OMII2), file and data transfer-
ring software (e.g., GridFTP, DataCutter, Replica Location
Service (RLS [7]), SRB, UeberFTP), monitoring software
(e.g., Network Weather Service (NWS), INCA), and prob-
lem solving environments (e.g., APST [5], BOINC [1]).

3 Workload Analysis

In this section we present the analysis of the NMI Labo-
ratory workload.

3.1 The Build-and-Test Workload

We have obtained a system-wide trace covering the past
two years of the NMI environment’s operation, which stores
information about all the Runs (and their Tasks). A total of
over 30,000 Runs, and over 2,000,000 Tasks were recorded
from 2004/10/01 until 2006/11/01. Table 1 details the work-
load’s size characteristics. While the BUILD and the TEST
workflows have similar numbers of runs, the BUILD work-
flows have a much lower number of Tasks (they typically
just compile, while for TEST workflows a large number
of individual unit tests must be executed), and the TEST
workflows consume a much lower amount of CPUTime (as
BUILD tasks have to wait for slow I/O operations, while
not yielding the machine’s CPU for some operation). The
Top-3 Projects dominate the workload in terms of number
of Runs, number of Tasks, and consumed CPUTime. As
expected, for the Platforms the CPU consumption is more
evenly distributed, as building and testing on as many plat-
forms as possible is an important reason for working with
the NMI Laboratory.

3.2 Arrival Patterns

We continue our analysis with a description of the arrival
patterns.

1The Virtual Data Toolkit (VDT),http://vdt.cs.wisc.edu/ .
2The Open Middleware Infrastructure Institute,http://www.

omii.ac.uk/



First Last No.Runs (% No.Tasks (% No. CPUTime No.
Category Record Record From Total) From Total) Users [Years] Hosts
Total 2004-09-14 2006-10-31 34951(100.00) 2406335(100.00) 54 89.57 122
Per run type

BUILD 2004-09-14 2006-10-31 16114(46.10) 623435(25.91) 50 54.39 119
TEST 2004-09-17 2006-10-31 18490(52.90) 1775611(73.79) 34 33.39 90

UNKNOWN 2004-09-14 2006-08-24 347(0.99) 7289(0.30) 14 1.78 31
Per project (rank)

condor (1) 2004-09-14 2006-10-31 21312(60.98) 2029276(84.33) 29 54.91 91
TG (2) 2005-05-04 2006-10-31 847(2.42) 127171(5.28) 2 16.02 40

VDT (3) 2004-10-18 2006-10-31 2438(6.98) 72500(3.01) 11 8.28 52
nmi (4) 2004-09-14 2006-09-02 2014(5.76) 77249(3.21) 9 2.93 47

BOINC (6) 2005-12-20 2006-10-31 302(0.86) 32888(1.37) 1 1.55 57
Per platform (rank)

X86/Linux-RH/9 (1) 2004-09-14 2006-10-31 9072(25.96) 223982(9.31) 50 8.73 16
HP/HPUnix/10 (2) 2005-04-07 2006-08-09 1967(5.63) 108097(4.49) 24 6.71 5

Sun/Solaris/5 (3) 2004-09-14 2006-10-31 6245(17.87) 237981(9.89) 35 6.68 11
PowerPC/AIX/5 (6) 2004-11-04 2006-10-31 4587(13.12) 120630(5.01) 35 3.9 9

IA64/Linux-RH-AS/4 (8) 2005-09-07 2006-10-31 4712(13.48) 24516(1.02) 18 3.04 5

Table 1. The size characteristics of the NMI Build-and-Test workload. Both Projects and Platforms
are ranked by the consumed CPUTime. Note that not all Projects or Platforms are displayed.
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Figure 2. The yearly, weekly, and daily arrival
patterns of the test runs, per run type.

Figure 2 depicts the yearly, weekly, and daily Runs’ ar-
rival patterns. For a large contiguous part of the data, e.g.,
for the period between March 2005 to July 2006, the arrivals
level remains almost constant throughout the year, with the
exception of July, which is a slow month in both 2005 and

2006. Three submission intensities can be observed on the
yearly arrival pattern: low, until March 2005, medium, from
March 2005 until August 2006, and high, from August 2006
on. Such levels of intensity occur when the Project to which
the testing process is associated evolves; here, the main
Project grew in approximately one-year steps. The num-
ber of submissions increases towards the mid-week, to de-
crease then towards the week’s end. The high-demand part
of the day occurs between 09:00 GMT and 10:00 GMT,
with the peak part of the day occurring between 08:00 GMT
and 22:30 GMT. Note that the local time is GMT-8, for an
expected nocturnal, tool-driven, environment. Similar pat-
terns to the global ones can be observed for each of the two
major Run types, i.e., Build and Test.

Figure 3 shows a comparative view of the Runs’ and
Tasks’ daily arrival patterns, throughout the whole year
2005. The arrival patterns are similar, but there is a de-
lay of about two hours between the spikes observed for the
arrival of Runs, and those observed for the arrival of the
Tasks. We ascribe this phenomenon to BUILD Runs (low
number of Tasks) being almost always followed by TEST
Runs (relatively high number of Tasks). This is confirmed
by the breakdown of the type Runs’ daily arrival patterns
in Figure 2: between 08:00 and 09:00 GMT almost all the
Runs are of the type BUILD, from 09:00 to 9:30 GMT the
BUILD and TEST Runs are equally present, and from 09:30
to approx. 14:00 GMT the TEST Runs are predominant.

3.3 Individual Workflow Structure
We now detail the structure of individual Runs.



0

20

40

60

80

100

00/05
01/05

02/05
03/05

04/05
05/05

06/05
07/05

08/05
09/05

10/05
11/05

12/05
13/05

14/05
15/05

16/05
17/05

18/05
19/05

20/05
21/05

22/05
23/05

P
e
rc

e
n
t 
o
f

M
a
x
im

u
m

 C
o
u
n
t 
[%

]

Hour / Year

Daily Arrival Pattern (zoom: 2005)
Runs, ALL
Tasks, ALL

0

20

40

60

80

100

Sun/04
Mon/04

Tue/04
Wed/04

Thu/04
Fri/04

Sat/04
Sun/05

Mon/05
Tue/05

Wed/05
Thu/05

Fri/05
Sat/05

Sun/06
Mon/06

Tue/06
Wed/06

Thu/06
Fri/06

Sat/06

Weekly Arrival Pattern

0

20

40

60

80

100

Sep/04
Oct/04

Nov/04
Dec/04

Jan/05
Feb/05

Mar/05
Apr/05

May/05
Jun/05

Jul/05
Aug/05

Sep/05
Oct/05

Nov/05
Dec/05

Jan/06
Feb/06

Mar/06
Apr/06

May/06
Jun/06

Jul/06
Aug/06

Sep/06
Oct/06

Nov/06

Month / Year

Yearly Arrival Pattern

DayOfWeek / Year

P
e
rc

e
n
t 
o
f

M
a
x
im

u
m

 C
o
u
n
t 
[%

]
P

e
rc

e
n
t 
o
f

M
a
x
im

u
m

 C
o
u
n
t 
[%

]

Runs, ALL
Tasks, ALL

Runs, ALL
Tasks, ALL

Figure 3. Comparison of the daily, weekly,
and yearly arrival patterns of the test runs
and tasks.
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Figure 4 depicts the distribution of the number of Tasks
per Run, per Run type. Overall, the average number of
Tasks for a BUILD Run is 39 (the standard deviation is
61.3); for a TEST Run, the average number of Tasks is
96 (the standard deviation is 75.3). When considering only
Test Jobs, the values follow the same distribution, but are
slightly lower.

Figure 5 shows the transition graph averaged over the
whole workload. Only transitions with a probability over
10% are displayed. For each node, the highlighted path is
composed from the most likely transitions. After entering
the system (note start ), a Run is likely to start with
a platform job , a composite Task which also contains
Test Jobs (the main purpose of the Run’s execution, see Sec-
tion 2). Then, after several more pre-setup Tasks (nodes
remote declare andremote pre ), a remote task
composite Task is called, which in turn calls almost al-
ways a string of Test Job (nodeother ), which are ex-
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Figure 5. Transition graph for the whole work-
load. The thin light-gray line shows the tran-
sitions, as expected from the NMI workflow
definition.

ecuted sequentially. When the sequence is shown, with
high probability either anotherplatform job , or a post-
setupplatform post Tasks are executed. The relative
chances ofplatform job vs. platform post are
2:5. Note that neither transition is depicted on the transi-
tion graph, as the probability of each is less than 5% (the
probability of a Test Job node to transit to itself is 95%).
The Run ends and exits the system with a transition to the

stop node.
Figure 6 shows the histogram of the number of compo-

nents per project (e.g., for each number of components per
project, the vertical axis represents the number of occur-
rences (test runs) having this ratio of components for a given
project). Note the use of the logarithmic scale for the ver-
tical axis. We observe that the distribution of the number
of components per project looks like a heavy-tail: most of
the projects have only one component, 10 projects have 2 to
4 components each, and that the remaining 5 projects have
from 5 to 56 components, without the same components per
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Figure 6. Histogram of the number of compo-
nents per project.
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Figure 7. Histogram of the number of plat-
forms per component.

project value repeating.
Figure 7 shows the histogram of the number of plat-

forms per component (e.g., for each number of platforms
per component, the vertical axis represents the number of
occurrences (test runs) having this ratio of platforms for a
given component). Note the use of the logarithmic scale for
the vertical axis. Different from the components per project
histogram, there is a wide spread of values, with a majority
of components being tested on at most 13 platforms. The
condor project’s main component (condor), is built on the
largest number of platforms possible, 41. Components of
BOINC and Globus/TG are being built on 26 and 17 plat-
forms, respectively. Note that the Globus toolkit is also be-
ing built on other platforms, but by independent projects.

3.4 Correlations Between Characteristics
In this section we investigate the existence of correla-

tions between the characteristics of the workload. We look
in particular at the potential correlation between the pres-
ence of failures and (i) the duration of the test runs, (ii) the
platform where the test tasks are executed.

Figure 8 shows the correlation between the presence of
failures and the duration of the test runs. Each point at
coordinates(x, y) represents the existence of at least one
successful run (dark-colored circles) or that of at lest one
failed run (light-colored triangles) at timex, with the du-
ration of the run equal toy hours. We observe that longer
runs fail more often. For the workload under study, runs
longer than 1000 hours (above the dotted line in Figure 8)
always fail. We use this result to optimize the test process,
in Section 4.2.

Figure 8 shows the lack of correlation between the test
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outcome and the platform where test tasks run. For each
platform (vertical axis), each point at horizontal coordinate
x represents the existence of at least one successful run
(dark-colored circles) or that of at lest one failed run (light-
colored triangles) at timex. We only show data for one
year (2005) for three platforms which differ only in the ver-
sion of their OS. While tests were conducted in parallel for
all three platforms, there is no significant difference in the
occurrence of successful and of failed runs per platform.
We have investigated all the other platforms present in the
workload, and obtained similar results.

3.5 Build-and-Test Performance
We look now at two performance indicators: the dura-

tion of the individual Tasks, and the number of discovered
errors.

Figure 10 shows the cumulative distribution function of
the tasks’ runtime, per task category. For the horizontal
axis, note the logarithmic scale; the time unit is 60 seconds
(1 minute). To eliminate flurries, we consider all task run-
times exceeding 1000 time units as 1001 time units. Most



Failed Runs Failed Tasks
All All Machine

Category (% runs) (% tasks) (% All)
Total 37.99% 5.89% 13.12%
Per run type

BUILD 22.06% 3.48% 10.32%
TEST 15.31% 2.35% 17.25%

Per project
Project Rank 11 19.64% 2.87% 16.54%
Project Rank 21 2.12% 1.30% 9.97%
Project Rank 31 4.38% 0.47% 11.03%
Project Rank 41 3.71% 0.54% 7.52%
Project Rank 61 0.74% 0.25% 5.55%

Per platform (rank)
Platform Rank 12 13.07% 0.59% 13.45%
Platform Rank 22 3.21% 0.38% 5.57%
Platform Rank 32 15.00% 0.92% 11.14%
Platform Rank 62 7.64% 0.31% 14.09%
Platform Rank 82 5.89% 0.35% 8.98%

1,2 See Table 1 for the actual project and platform names.

Table 2. Summary of the observed failures for
the NMI Build-and-Test workload.

test jobs (category ’actual tests’) take less than 5 minutes,
with an average of about 4 minutes (the standard deviation
is 24.4). The jobs that retrieve data and/or source code (cat-
egory ’Fetch’) are usually very short, with an average of
about 1 minute (the standard deviation is 9.2).

Table 2 details the observed failures. TheFailed Runs,
All column shows the percentage of the number of Runs that
failed, from all the Runs. The number of failed Runs overall
(row Total) is around 40%, which underlines the critical im-
portance of the build-and-test system. The BUILD Runs fail
more than the TEST Runs, both in absolute terms (22% of
the total number of Runs are failed BUILD Runs, whereas
below 16% of the total number of Runs are failed TEST
Runs), and relative terms (the BUILD Runs are slightly
fewer than the TEST Runs, yet they yield more failures).
The most thoroughly tested project, Condor, reveals the
highest absolute percentage of failed Runs, about 20% of
the total number of Runs (note that for Condor a Run fails if
anyof its Tasks fails), but a much lower relative percentage,
as the Condor Runs represent over 60% of the workload (see
Table 1). TheFailed Tasks, Allcolumn shows the percent-
age of the number of Tasks that failed, from all the Tasks.
A surprisingly low amount of Task errors shows again the
importance of the build-and-test environment: when a soft-
ware package needs to be shipped, it must be functioning
correctly under all predicted platforms or uses cases; a small
amount of failures, revealed only under cross-platform test-
ing, results in a high number of failed Runs (overall tests).
The Failed Tasks, Machinecolumn shows the number of

 0

 250

 500

 750

 1000

Oct/04 Jan/05 Apr/05 Jul/05 Oct/05 Jan/06 Apr/06 Jul/06

Ite
m

s 
pe

r 
D

ay

Date/Time

Task Failures

16/Sep/06 30/Sep/06 14/Oct/06 28/Oct/06 11/Nov/06

 0

 50

 100

 150

Oct/04 Jan/05 Apr/05 Jul/05 Oct/05 Jan/06 Apr/06 Jul/06

Ite
m

s 
pe

r 
D

ay

Date/Time

Run Failures

16/Sep/06 30/Sep/06 14/Oct/06 28/Oct/06 11/Nov/06

Figure 11. The daily pattern for run and for
task failure occurrence. Note the different
scale for the right part of the graphic.

failures due to machine unavailability or crashes, relative to
the total number of failed tasks. The percentage of failures
due to the testing environment is below 20%.

4 Applications

Throughout this section, we focus on applications of the
build-and-test environment analysis. We assume an incre-
mental development process [3, 4], and we focus on test
management, test optimization, and environment provision-
ing and setup issues. We point out that a more in-depth
treatment of these problems is beyond the scope of this
work, as the build-and-test area that is rich in research and
technical problems.

4.1 Test Management

We investigate here the automated tools that can assist
a project manager’s decisions. Various performance in-
dicators can be used in practice to estimate how close is
the project to a releasable state, to assess the development
team’s performance, and to manage the test environment
(discover faulty machines). We have already introduced in
Section 3 a set of analysis tools that characterize the test
process, and assess the test process’s performance. We add
in this section tools for more detailed failure analysis: the
occurrence of Run and Task failures, and the observedmean
time to failure(MTTF) andmean time to recovery(MTTR).

Ideally, the project manager would make a shipping de-
cision based on the trends of the number of failures over
time (i.e., convergence to 0). A shipping decision can also
be taken if the number of observed errors remains at a level
below a certain threshold. Figure 11 depicts the daily pat-
tern for run and task failure occurrence. The number of Run
failures per day is on average 18 (the standard deviation is
14.0). The number of Task failures per day is on average
183 (the standard deviation is 151.8). A number of out-
standing bugs occur daily, but are soon fixed (see also the
following discussion on MTTF and MTTR).
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Figure 12. The MTTF and the MTTR for the
whole workload, over 2005. Note the different
scale for the right part of the graphic.

We define MTTF as the average interval between two
consecutive failures, and MTTR as the interval between a
failed Run (or Task) and the consecutive successful Run
(or Task). Figure 12 depicts the MTTF and MTTR for the
whole workload, over the year of 2005. The average MTTF
is 4013s (cca.11

2 hours); the standard deviation is 9630.47.
The average MTTR is 2414s (less than1 hour); the develop-
ment team is doing a good work in preventing the long-term
existence of important (crash) bugs.

4.2 Test Optimization
The most important optimizations in the testing process

concern the time vs. accuracy trade-off. The key question
is how to reduce the time needed for testing, while still be-
ing able to observe and categorize the failures. While many
domain-specific optimization techniques are available, we
focus here on a generic optimization technique, by inves-
tigating the tradeoff between the tasks’ run time and the
process outcome. We consider a modified test process in
which jobs are stopped before their normal finish time, if
their runtime exceeds a certain threshold; the result of the
stopped jobs is considered to be correct. By stopping the
jobs early, the total test time is reduced, at the expense of
a lower number of errors observed in the system. This op-
timization is generic in the sense that it requires only in-
formation available to any test process: the duration of the
jobs. We aim therefore at answering the question:If the test
tasks are stopped after a certain period, what is the result-
ing performance?(from hereon, thetrade-off question).

We first describe the performance metrics:

Accuracy(t) =
NDetected(t)
NTotal(T )

× 100[%] (1)

Accountability(t) =
NDetected(t)

NTotal(t)

NDetected(T )
NTotal(T )

× 100[%] (2)

SavedT ime(t) = (1− UsedT ime(t)
UsedT ime(T )

)× 100[%] (3)
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Figure 13. The tradeoff between the tasks’
run time and the process outcome: Accu-
racy, Accountability, and SavedTime vs. the
run time cut-off point.

wheret is the current system state, e.g., the current time,
andT is the final system state, e.g., the end-of-test time.
NDetected(·) and NTotal(·) return the number of de-
tected and of total number of failures for the test process
up to a given moment of time, respectively.

Accuracyshows how well the test results are predicted
under the test conditions (see Eq. 1). The closer the accu-
racy is to 100%, the better.Accountabilityshows how well
the test trends are predicted under the test conditions (see
Eq. 2). The closer the accountability is to 100%, the better.
We expect the Accountability to converge much quicker to
100% (perfect trends prediction) than the Accuracy.Saved-
Timeshows how much of the test time is saved under the
modified conditions (see Eq. 3). The closer this is to 100%,
the better. There can never be a save of 100%, if any tests
are to be performed. Finally, we define therun-time cut-
off pointas the time when tasks are stopped and considered
failed (note that no description can be given on this type of
failure). Besides answering the trade-off question, we want
to also establish the optimal cut-off point (OptCO), that is,
the point with the highest combined SavedTime, Accuracy
and/or Accountability level. The OptCO depends on the de-
tails of the build-and-test workload.

We perform our investigate using the real build-and-
test workload presented in Section 2 and analyzed in Sec-
tion 3). Note that for any timet the values ofNTotal(t)
are extracted from the input workload, whereas the val-
ues ofNDetected(t), SavedT ime(t), Accuracy(t) and
Accountability(t) are computed. OptCO is found to be
around 330 minutes, or the equivalent of5 1

2 hours; the cor-
responding Accuracy and SavedTime values are of 93%,
and 95%, respectively (see Figure 13).



Algorithm 1 Algorithm for generating synthetic Build-and-
Test workloads. The steps tagged with? are optional.
Input:

. 2× n, the number of Runs to generate.

. D1−5, the distributions depicted in
Figures 2, 4, 6, 7, 10 respectively.

. D6, columnFailed Tasks, All, rowsPer run type,
from Table 2.

. TG, the transition graph shown in Figure 5.
Output: A synthetic build-and-test workload.

1: Generaten arrival times for BUILD Runs fromD1.
2: Generaten arrival times for RUN Runs, each 2 hours

later than the previously unmatched BUILD Run.
3: for each Runri do
4: Generate the number tasksti, from D2.
5: ? Generate the number of componentsci, from D3,

then foreach componentcj generate the number of
platformspi,j , from D4.

6: ? Split theti tasks between all platforms.
7: for each Taskti in a group of tasksdo
8: Assign the task a typeΘi, following TG.
9: Assign the task a runtimeτi, from D5, usingΘi.

10: ? Decide if the task would succeed, based on the
Run type, and onD6.

4.3 Test Environment Management

There are many design alternatives when setting up a
new build-and-test environment, in the form of hardware,
of operating software, of middleware (e.g., a large variety
of schedulers), and of software libraries. Using synthetic
workloads, the design choices may be compared under re-
alistic load [2, 6, 12]. When a new system is replacing an
old one, running a synthetic workload can show whether the
new configuration performs according to the expectations,
before the system becomes available to users. The same
procedure may be used for assessing the performance of
various systems, in the selection phase of the procurement
process. We propose using a tool like theGRENCHMARK

framework [14] for generating and submitting synthetic
build-and-test workloads. TheGRENCHMARK framework
allows its users to plug-in workload generators, and then
facilitates the submission and the analysis processes. We
therefore focus in the rest of this section on the synthetic
generation of build-and-test workloads.

Algorithm 1 provides the means for generating a build-
and-test workload. Note that the algorithm is not specifi-
cally bound to the data presented in this paper. In the case
when the data is not available, the user needs to design the
distributionsD1−6, and the expected transitions graphTG.
Steps 1 and 2 of Algorithm 1 define the arrival times of the
test Runs, based on the observations a TEST Run arrives al-
most always 2 hours after a BUILD Run (see Section 3.2),

and that the number of BUILD and TEST Runs are similar
(see Table 1). Step 4 fixes the number of Tasks for each
Run. Steps 5 and 6 are optional, and should be used only
for workloads where the existence of components and plat-
forms is required. Steps 8 and 9 assign the type and the
run time of a task. Step 10 assigns whether the task would
fail out of its own problems (and not from system failures).
This last step is optional: it should be followed only if the
investigation for which the workload is generated has steps
that depend on the number of failed jobs (e.g., the tests are
repeated until less that a fixed number of jobs fail). For ex-
ample, this step can be skipped the build-and-test workload
is used to test whether the tested system can accommodate
a certain amount of jobs.

5 Related work

Our work stands at the crossing of two research direc-
tions: characterizing workloads and environments of great
importance, and performing testing and benchmarking of
large-scale software.

The problem of characterizing the workloads from criti-
cal environments has received constant attention from both
the academic and the industry communities. A significant
number of workload and trace analysis papers have dealt
with the specifics of request-based (Web) workloads [2, 20],
parallel production environments [9, 6, 18], large-scale
(grid) computing environments [17, 19, 13]. Here, much
effort has been put in proving that realistic workload mod-
eling pays dividends for system-improving work. To the
best of the authors’ knowledge, ours is the first effort that
analyzes the characteristics of a build-and-test workload for
the middleware of large-scale computing environments.

The problem of testing and benchmarking large-scale
software is a key part of the software engineering discipline.
Here, the main question to be answered is what makes a
good testing or benchmarking environment [8, 23, 24]. The
work of Tian and Palma [23] presents insights into the char-
acteristics of a workload used to test large commercial soft-
ware products. In grids, efforts have been directed to cre-
ating synthetic test suites that operate on grid middleware
in real environments, like the GrASP [8, 16], or the Grid-
Bench [24] projects. Comparatively, this work shows how a
dedicated build-and-test environment is used to effectively
control the development and shipping of a large number of
software packages for large-scale environments.

6 Conclusion and future work

In this paper we have addressed two problems specific to
building-and-testing middleware for large-scale (grid) com-
puting: establishing the characteristics of a build-and-test
environment, and improving the efficiency of the build-and-
test environments use. To this end, we have first introduced



then analyzed a two-year long trace coming from the NMI
Laboratory, which encompasses over 2.4 millions of test
tasks. We have established for this environment the overall
workload characteristics, the arrival patterns, the individual
test workflow structure, and the build-and-test performance.
Second, we have proposed mechanisms for more efficient
test management and operation, and for resource provision-
ing and evaluation. Notably, we have proposed a generic
test optimization technique that reduces the test time by
95%, while achieving 93% of the maximum accuracy, un-
der real conditions. We have also proposed an algorithm for
generating synthetic build-and-test workloads, which shows
good promise for test environment design, procurement and
setup.

Besides their quantitative value, our results uncover an
area that is rich in research and technical problems. We
plan to continue investigating generic and grid-specific op-
timization mechanisms for the testing process, and to extend
the NMI Laboratory capabilities, especially in the direction
of automated management. Last but not least, we intend to
make use of this infrastructure for building and testing our
own Grid and P2P middleware.
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