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Abstract

In a cluster computing environment, executable, checkpoint, and data
files must be transferred between application submission and execution
sites. As the memory footprint of cluster applications increases, storing
and restoring the state of a computation in such an environment may
require substantial network resources at both the start and the end of a
CPU allocation. During the allocation, the application may also consume
network bandwidth to periodically transfer a checkpoint back to the sub-
mission site or checkpoint server and to access remote data files. Under
most circumstances, the application can not use the allocated CPU while
these transfers are in progress. Furthermore, if the application is unable
to transfer a checkpoint or successfully migrate at preemption time, work
already accomplished by the application is lost.

We define goodput to be the allocation time when a remotely executing
application uses the CPU to make forward progress. Goodput can be
significantly less than allocated throughput due to network activity. We
are currently engaged in an effort to develop co-scheduling techniques
for CPU and network resources that will improve the goodput delivered
by Condor pools. We report techniques we have developed so far, how
they were implemented in Condor, and their preliminary impact on the
goodput of our production Condor pool.

1 Introduction

A High Throughput Computing (HTC) environment [1] strives to provide large
amounts of processing capacity over long periods of time by harnessing available
resources on the network. To maximize the amount of available resources, an
HTC environment makes use of non-dedicated, distributively owned worksta-
tions. Distributed ownership occurs when the control over powerful computing
resources in the cluster is distributed among many individuals and small groups.
The HTC environment respects the owner’s rights by allowing an allocation to



be created and preempted at any time, according to the owner’s policy. An ap-
plication checkpoint facility [2] enables the environment to use preempt-resume
scheduling to combine many short allocations to complete a long run of an
application.

The primary goal of an HTC environment is to maximize the processing
capacity allocated to customer applications while effectively enforcing the poli-
cies of resource owners. By deploying the Condor HTC environment [3] at the
University of Wisconsin, we have consistently allocated over half of the cluster
capacity to HTC. For example, Condor allocated more than 150 thousand CPU
hours to HTC applications during September 1998 in our 400 node cluster.!

In the past, our research has operated on the assumption that typical HTC
applications perform little I/O and have a small memory footprint, so the de-
mand for network capacity (for remote I/O and checkpoints) was assumed to be
insignificant. Recently we have experienced a dramatic increase in the amount
of physical memory available on each node in the cluster. This increase has
made HTC environments more attractive to applications with larger I/O re-
quirements (i.e., larger data sets) and larger memory footprints. Therefore, we
can no longer ignore the overheads associated with network activity. In most
cases, HTC applications do not use the allocated CPU while performing network
operations. Also, since resource owners often place deadlines and restrictions on
application preemption, these larger applications may be unable to checkpoint
fast enough when preempted by owner activities.

We define goodput to be the allocation time when a remotely executing ap-
plication uses the CPU to make forward progress. In other words, goodput is
the true throughput obtained by the application. Goodput can be significantly
less than allocated throughput due to network activity and can vary depending
on application attributes (I/O activity and checkpoint size), available network
bandwidth, and cluster policies. For example, in our 400 node cluster, goodput
typically ranges from 80% to 95% of allocated throughput.

Measuring improvements in goodput is a complex task, making adaptive
approaches for goodput improvement a challenge. Changes in customer appli-
cations, network infrastructure, workstation availability, and policies all affect
goodput in the HTC environment. Therefore, our initial approach is to put tools
and controls into the hands of the HTC administrator for managing goodput.
Once we gain more experience, we may develop a more adaptive approach.

Co-scheduling CPU and network capacity can improve goodput by taking
advantage of the variety of application network capacity requirements, network
capacity between hosts, deadlines for network transfers, and network demand
over time in a cluster. We are currently engaged in an effort to develop co-
scheduling techniques to improve the goodput delivered by Condor pools. We
report techniques we have developed so far, how they were implemented in
Condor, and their preliminary impact on the goodput of our production Condor
pool.

1Condor pool statistics are available online at http://www.cs.wisc.edu/condor/.
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Figure 1: Goodput = Allocated Throughput - Network Wait Time - Roll-back

2 Goodput

We define goodput to be the allocation time when a remotely executing appli-
cation uses the CPU to make forward progress. An application is prevented
from using the CPU when it is waiting for the network. Additionally, forward
progress is lost when an application must roll-back to an earlier state due to a
failure. So, the goodput of an application is less than the allocated throughput
due to roll-backs and time spent waiting for the network (see figure 1). Applica-
tion placements, periodic checkpoints, migrations, and remote file access entail
waiting for the network. Failed migrations cause application roll-backs.

It is important to understand how much network capacity is required and
what are the completion deadlines (if any) for each network operation which
may affect goodput. When this information is known in advance, it can be
used to make anticipatory scheduling decisions before the operation begins.
Guaranteed availability of network resources when required by applications will
improve goodput by reducing time spent waiting for the network.

Application placement involves the transfer of the executable and checkpoint
data. The amount of data to be transferred is known in advance of the allo-
cation, since the sizes of the executable and checkpoint files are known. The
executable is usually small compared to the checkpoint, which may be hun-
dreds of megabytes in size, since the checkpoint contains the memory image of
the application and may also include cached input and intermediate file data.
Placement occurs at the start of the allocation.

A periodic checkpoint transfers application checkpoint data to a file system.
The size of the checkpoint is a function of the memory usage of the process and
therefore can be estimated in advance. Periodic checkpoints are performed to
reduce the risk of lost work resulting from a failed migration. While performing
a periodic checkpoint, the application does not make forward progress, unless
a copy-on-write strategy is used.? Periodic checkpoints may be scheduled in
advance by the resource manager.

Application migration involves the transfer of the checkpoint data to a file
system or to the memory of a new workstation. As described previously, the
size of the checkpoint may be estimated in advance. Migration is triggered when

2A copy-on-write checkpointing strategy is implemented by making a copy of the running
process using the Unix fork system call (or equivalent), which uses copy-on-write virtual
memory pages. One copy of the process continues processing while the other performs the
checkpoint. This strategy may result in network contention if the application performs net-
work I/O operations and memory contention if the application writes many pages while the
checkpoint is in progress, so it is not the best approach in all circumstances.



the owner reclaims the workstation or when the resource manager preempts the
application to enforce customer priorities. The workstation owner may reclaim
the workstation and trigger migration at any time. Migration may fail due to a
preemption deadline or limits on resource consumption during preemption, and
the cost of a failed migration may be high because all work performed by the
application since the most recent checkpoint is lost.

Remote file access is required to enable the application to read input files and
write results. The amount of I/O performed by the application is usually not
known in advance by the resource management system. However, the resource
manager may estimate the amount from measurements of previous executions of
the application, or the application may provide a hint to the resource manager.
I/0 operations are initiated by read and write system calls performed by the
application, so the timing of these operations is not known in advance.

When demand for network resources exceeds capacity, these network trans-
fers require more time to complete. This increases the time an application waits
for the network and the chance that an application migration will fail to com-
plete before its deadline. We use our knowledge of network demand, computed
from the sizes of checkpoint and data files, to schedule network transfers to avoid
overloading the network. Before introducing our co-scheduling techniques, we
first must provide an overview of the Condor environment.

3 Condor Environment

A detailed description of Condor is available in [4]. We give a brief description
of the relevant system components here.

The matchmaker initiates allocations in the cluster by periodically matching
resource requests with resource offers according to the matchmaking protocol.
When a match is found, the customer agent which made the resource request
and the resource owner agent which made the resource offer are notified by the
matchmaker. The agents then initiate a claiming protocol between themselves.
These protocols are illustrated in figure 2. When necessary, the matchmaker will
break a match and create a new match between the resource and a customer
with a better system priority. This preempts the allocation associated with the
broken match (and the customer with inferior priority), resulting in application
migration.

The resource owner agent controls an opportunistic resource by implement-
ing the policies of the resource owner. The resource owner controls the avail-
ability of the resource through a start policy which controls when an application
may begin using the resource and a preemption policy which controls when the
application will be preempted. These policies may depend on time of day, key-
board and mouse activity, CPU load average, attributes of the customer making
the resource request, and other factors. The policies are distributively and dy-
namically defined by the resource owners. The owner has complete control over
the policy and may preempt the application at any time.

The application resource manager is an agent which performs application-
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Figure 2: Condor Matchmaking

level scheduling on behalf of the customer. This agent also acts as a shadow or
proxy for the application in the customer’s home environment by providing ac-
cess to local files on the customer’s home workstation. It directs the application
to the appropriate server for transferring executable and checkpoint files, and it
chooses the appropriate file access method for all files used by the application.
For example, the agent decides whether the application should access a given
file using NFS, AFS, or an RPC protocol to the agent itself. The agent is also
responsible for scheduling periodic checkpoints.

The checkpoint server is a file server specifically developed for bulk transfers
of large checkpoint files in the Condor environment. This server includes file
transfer accounting and a file commit mechanism to safeguard against failed
transfers overwriting earlier checkpoints. The application resource manager
directs the application to the appropriate checkpoint server. Figure 3 illustrates
the interaction between the application resource manager, the application, and
the checkpoint server.

The Condor environment implements a layered scheduling architecture. The
matchmaking protocol is responsible for matching compatible resource requests
and offers. The claiming protocol is responsible for initiating and maintaining
resource allocations. Finally, the remote execution protocol is responsible for
transferring data and checkpoint files. Our approaches for improving goodput
add network scheduling to each of these three layers. We describe our approaches
in detail in the following section.

4 Approaches for Improving Goodput

We first consider allocation efficiency, which is the ratio of goodput to allocated
throughput.

Goodput

Allocation Bfficiency = Allocated Throughput
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Figure 3: File Storage and Transfer in Condor

Allocation efficiency reflects the percentage of time an application uses the CPU
to make forward progress, i.e., when the application is not waiting for the net-
work and work is not lost due to roll-backs. For example, an application is
allocated two hours of CPU time. After 90 minutes of allocated CPU time, the
application performs a checkpoint. Up to this point, the application has spent
a total of 15 minutes waiting for the network. At the end of the allocation,
the migration fails. So, the application loses 30 minutes to roll-back and 15
minutes to network waiting. The goodput for this allocation is 75 minutes, and
the allocation efficiency is 62.5%.

Our objective is to improve allocation efficiency with minimal impact on al-
located throughput. For approaches which have no effect on allocated through-
put, it is clear that improving allocation efficiency will improve goodput. For
approaches which may reduce allocated throughput, we must verify that good-
put is in fact improved.

We have developed a set of co-scheduling techniques to improve goodput in
Condor. First, we use co-matching to regulate network usage for application
placements and preemptions. Second, we use checkpoint scheduling to regulate
network usage for periodic checkpoints and migrations. Third, we use compres-
sion, data staging, and data caching to reduce waiting for network resources.
For each technique, we first consider the impact on allocation efficiency and
then consider possible negative impacts on allocated throughput.

4.1 Co-matching

The matchmaker initiates CPU allocations by matching resource requests with
resource offers. To use a CPU allocation, the application resource manager must
perform an application placement. If this new allocation preempts a previous



allocation, the preempted application must also perform a migration. So, the
decisions of the matchmaker result in network activity for application place-
ments and preemptions. We add network capacity as an additional resource
controlled by the matchmaker to allow the matchmaker to schedule the network
activity it initiates.

The matchmaker can be the cause of bursts of application placements and
migrations. For example, when a customer submits a large batch of requests
to the system, the matchmaker may preempt many applications to service the
incoming requests and may immediately schedule many new applications as
a result of the requests. The resulting burst of high network demand slows
the application placements and migrations, leaving CPUs underutilized during
the potentially long transitional period. The high network demand also slows
unrelated migrations, potentially causing those migrations to require more time
than allowed by the resource owner, resulting in a failed migration and lost
application forward progress.

To control this bursty network demand, we modify the matchmaker to use
co-matching to match a resource request both with a resource offer and a net-
work bandwidth allocation. The available bandwidth allocations are limited to
control network usage in a given time period. The matchmaker is able to esti-
mate the bandwidth required for a match by adding the placement cost for the
new application (i.e., the sum of executable and checkpoint file sizes) and the
estimated migration cost (i.e., the estimated checkpoint size) of the application
to be preempted, if any. If a network bandwidth allocation can not be obtained,
the match is unsuccessful, and the matchmaker proceeds to search for other
resource offers which may successfully match the particular resource request.

The network bandwidth allocation is obtained per subnet, since network
bandwidth is not necessarily equally available throughout the network. The
matchmaker determines the source and destination of all network transfers and
attempts to allocated bandwidth on each subnet along the path of each transfer.
If the required bandwidth is unavailable on any of the subnets in question, the
match fails. If bandwidth is unavailable to place an application on a workstation
in a specific subnet, the matchmaker will consider other workstations on other
subnets.

Co-matching is implemented in the Condor framework as follows. The re-
source request includes the sizes and locations of the requesting application’s
executable and checkpoint files, and the resource offer includes an estimate of
the active application’s checkpoint size and the location of the checkpoint server
to be used to store the active application’s checkpoint. The network capacity
limits and network topology are specified in a matchmaker configuration file by
the Condor administrator, and the matchmaker maintains a record of recent
allocations to determine current available network bandwidth.? In keeping with
the Condor matchmaking framework, the matchmaker does not verify that the
application restricts itself to the requested allocation. Instead, the match no-

3This framework could be extended to use dynamic forecasting of network capacity, as
provided by the Network Weather Service [5], for example.



tification sent to the resource owner agent includes a description of both the
network and CPU allocations, and the resource owner agent is responsible for
enforcing the allocation limits. If the limits are exceeded, the resource owner
agent may either terminate the claim or arrange for the appropriate accounting
adjustment (i.e., reducing the customer’s priority appropriately for the addi-
tional resource usage).

The matchmaker allocates CPU and bandwidth to resource requests in pri-
ority order. The priority calculation may include historical CPU and network
usage, as well as the attributes of the resource request. Consider a first fit algo-
rithm where the attributes of the resource request are ignored. If a new customer
submits a set of applications with high network bandwidth requirements, these
applications may use all of the available network bandwidth to start on only
a few CPUs, starving the other customers and underutilizing available CPUs.
Alternatively, the attributes of the resource request may be used to grant a bet-
ter priority to applications with small network requirements, thereby increasing
CPU utilization. One of these smaller applications may be preempted when a
request with a large network requirement gains sufficient priority.

The network capacity limits delay application placements when bandwidth
is not available. When applications with large bandwidth requirements are
delayed, there may be sufficient bandwidth to place smaller applications instead,
to immediately utilize remaining CPUs and improve throughput. However,
CPUs may remain unused when there are only large applications in the system,
resulting in a decrease in throughput. Thus, if the administrator limits network
usage too aggressively, co-matching may actually decrease goodput.

An allocation may be considered an investment, where the costs are the
placement, migration, and other network overheads, and the payoff is the good-
put. It follows that applications with higher network overheads will require a
larger payoff for an allocation to be worthwhile. If future allocation time may
be accurately estimated or computed, then applications may benefit from spec-
ifying resource requests which give appropriate preference to longer allocations.
The length of time a workstation has been available is one possible predictor of
future availability [6]. Also, some workstations may have a known availability
schedule. A classroom workstation is an example, where it is known that the
workstation will be reclaimed by a student during class times.

4.2 Checkpoint Scheduling

The checkpoint server can provide scheduling for periodic checkpoints to avoid
bursts of periodic checkpoint traffic. Since jobs are often submitted to the sys-
tem in large clusters, performing periodic checkpoints at regular intervals during
the allocation often results in synchronized bursts of traffic. For example, fig-
ure 4 shows the number of checkpoint server connections for a twenty-four hour
period shortly after a large cluster of jobs was submitted to a Condor pool where
periodic checkpoints are not scheduled. The three hour periodic checkpointing
interval causes noticeable bursts at 1, 4, 7, 10, 13, and 16 hours. To avoid
bursts of periodic checkpoint traffic, the application resource manager contacts
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Figure 4: One Day of Checkpoint Server Transfers

the matchmaker to request permission to perform a periodic checkpoint. The
checkpoint server grants permission to each application resource manager in
turn. The application continues processing until permission is granted.

The choice of periodic checkpoint interval itself can have a dramatic impact
on allocation efficiency. A shorter interval increases the periodic checkpointing
overhead for the application, but may decrease the losses due to failed migra-
tions. To maintain the appropriate balance between these two factors, we must
weigh the cost of periodic checkpointing, which depends on checkpoint size and
available network capacity, with the likelihood and severity of failed migrations,
which also depends on checkpoint size and available network capacity, in addi-
tion to the resource owner’s preemption policy. We settled upon an interval of
three hours in our Condor pool after a period of experimentation. This is an
area of ongoing research.

The checkpoint server provides additional opportunities for managing net-
work bandwidth to improve allocation efficiency, since it participates in most
bulk transfers. Consider that migration streams have a hard deadline (due to
preemption time limits) while checkpoint read and periodic checkpoint streams
have no immediate deadlines. The checkpoint server can prioritize the streams
by suspending checkpoint read and periodic checkpoint streams during a mi-
gration so the migration will have a better chance of meeting its deadline. The
checkpoint server can also serialize streams to reduce network contention and
thereby obtain improved throughput.

As mentioned previously, the application resource manager is responsible for
choosing the appropriate access method for application files. The application
resource manager directs the application to write checkpoints to the checkpoint
server which it expects will provide the highest throughput. Using this mech-
anism, checkpoint servers may be deployed throughout the network to localize
traffic, since the server on the local subnet will be preferred over a server on a
remote subnet. Although the application may write a checkpoint to any server,
it must read the checkpoint from the server where it was written, unless a repli-
cation scheme is employed. However, the benefit is always achieved for the



time-critical checkpoint writes resulting from migrations.

Synchronized preemptions result in bursts of migration traffic, and many of
the migrations fail due to the temporarily high network demand. Synchronized
preemptions are often a result of system maintenance, when for example all
workstations are rebooted at a scheduled time after an operating system patch
is released or the resource management software is shut down for reconfiguration
or a software upgrade. Another cause for synchronized preemptions is synchro-
nized user behavior. For example, a cluster of workstations in a classroom will
experience synchronized preemptions at the start of class. Since these events
may often be anticipated, we have developed an external scheduler which me-
thodically preempts nodes prior to a scheduled event. This increases the number
of successful migrations and thereby increases allocation efficiency.

Pre-scheduling preemptions decreases allocated throughput since applica-
tions are preempted prior to the true preemption event. So, if this technique
is used too aggressively, it may actually decrease goodput. The administrator
must consider the likelihood of failed migrations when setting the policy for
the external scheduler. In all other techniques described in this section, check-
point scheduling occurs independent of application placement and preemption
decisions, so there is no negative affect on allocated throughput.

4.3 Reducing Overall Network Demand

It is also important to strive to minimize the amount of checkpoint and file
data that must be transferred over the network for remote execution to improve
allocation efficiency. Valuable techniques for fast checkpointing including com-
pressing checkpoints and checkpointing only dirty pages have been developed
by others [7]. Data staging techniques are also worthwhile [8]. For example, on
migration the application may write the checkpoint file to the local filesystem
and only transfer the checkpoint over the network when resources are available.
Also, a data caching policy can be used to reduce the remote I/O overhead dur-
ing the allocation. Since these techniques do not affect application placement
and preemption decisions, they have no negative impact on allocated through-
put.

5 Monitoring Goodput

The goodput delivered to applications is a measure of the health of the sys-
tem. Since goodput depends on the type of applications in the system, network
infrastructure, number and capacity of workstations in the cluster, cluster uti-
lization by interactive users, configuration of the scheduler, and other factors,
it is important to monitor goodput throughout the life of the system to detect
problems. In particular, we have found that by monitoring goodput per appli-
cation, we can detect problems with specific workstations and subnets in the
cluster, and we can determine if the system configuration should be adjusted to

10
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enhance the service provided to particular classes of applications. Monitoring
goodput supports quality control by the system administrator.

One method we use to monitor goodput is to keep a small number of repre-
sentative applications running at all times and track the goodput obtained by
these applications. Each representative application shares requirements (mem-
ory, remote I/0, operating system, CPU architecture) with a class of real ap-
plications in the system. The local Condor administrator chooses a set of repre-
sentative applications which correspond to the planned uses of the Condor pool.
Together, these representative applications form a “goodput index” which mea-
sures changes in goodput overall and for specific application classes. The set
of representative applications can be modified as new uses for the Condor pool
develop. Thus, the index may show a drop in goodput as a direct result of
the introduction of more demanding applications to the pool, which indicates a
possible need for policy adjustment or upgrade in pool capacity.

Figure 5 shows a weekly plot of goodput and allocated throughput as mea-
sured by a 10 application goodput index for the UW-Madison CS Condor pool.*
Allocated throughput varies significantly due to pool usage and system out-
ages. For example, when there are many applications submitted to the system,
the throughput allocated to the goodput index is reduced. The gap between
goodput and allocated throughput (i.e., allocation efficiency) also varies. By
following these statistics over the past six months, we have been able to quickly
detect a number of efficiency problems in the system, including configuration
and software errors.

Statistics maintained by the checkpoint server are also useful for monitor-
ing goodput. The checkpoint server maintains a record of all attempted file
transfers. This record is used to report network usage by the system, includ-
ing success rate and network throughput obtained per user, per workstation,
and per subnet. The statistics are then used to set the scheduling policies in
the matchmaker and the checkpoint server(s). Figure 4 was created from these

4 Additional goodput statistics for the UW-Madison CS Condor pool are available online
at http://www.cs.wisc.edu/condor/goodput/.
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statistics.

The goodput mechanisms rely on estimates of future network utilization for
checkpoints and remote file access. We can log these estimates and compare
them to the actual utilization. We report cases where the estimates are signif-
icantly wrong to the system administrator for further investigation. In many
cases, the estimates can be improved by providing additional information in the
job submission and system configuration files.

6 Conclusion

We anticipate a number of challenges ahead for successfully deploying these
technologies for improving goodput. We must develop an effective model of the
network and I/O capabilities of a Condor pool to enable us to set our schedul-
ing policies appropriately. This requires the ability to obtain the information
needed to build such a model. We also must extend the ClassAd matchmaking
framework [9] to include co-matching and develop a multi-resource consumption
based priority scheme to replace the ad hoc mechanisms we are currently using
to manage network bandwidth in the matchmaker.

The policies set by resource owners can have a dramatic effect on goodput.
In this paper, we have assumed that these policies are outside of our control. We
plan to investigate mechanisms and policies which will keep resource owners sat-
isfied while improving goodput. For example, there are a number of techniques
we believe may reduce the impact of application migration on the workstation.
Employing these techniques may allow us to relax preemption deadlines.

The increase in physical memory on the desktop and the interest in larger
and more geographically distributed Condor pools has prompted us to investi-
gate providing high throughput cluster computing in environments with limited
network bandwidth. We have developed a goodput metric for measuring the
efficiency of remote execution in Condor, and we have developed mechanisms
for improving goodput by co-scheduling CPU and network capacity.
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