High Throughput Monte Carlo

Jim Basney* Rajesh Raman* Miron Livny*

Abstract

We present a cost-effective framework for conducting large scale Monte Carlo (MC)
studies which exploits the natural parallelism of the MC method to harness the power
of large, dynamic collections of computing resources. We describe the benefits of the
dynamic master-worker (MW) parallel programming paradigm and how task parallel
and job parallel MW applications fit into our framework. We discuss the issues
involved in supporting MC applications in this framework, including random number
generation, resource management, remote file access, and checkpointing. We conclude
with descriptions of selected customer experiences.

1 Introduction

Monte Carlo (MC) applications are naturally parallel, since random samples may be
computed and analyzed independently. The Condor High Throughput Monte Carlo
(HTMC) framework delivers the computing power of CPUs distributed across a network
to scientists conducting large scale MC studies. This framework combines the dynamic
master-worker (MW) paradigm with a distributed, scalable random number generator and
the services provided by a High Throughput Computing (HTC) environment [1].

The paper proceeds as follows. Section 2 defines the dynamic MW paradigm, and
section 3 describes the random number generator used to implement our framework. In
section 4, we describe in detail the services needed by HIMC applications and how those
services are provided by the Condor HTC environment. We conclude with a description of
user experiences in section 5.

2 Dynamic Master-Worker Paradigm

The master-worker paradigm is a natural fit for parallel Monte Carlo applications, since
random samples may be computed and analyzed independently. In a MW application, the
master partitions the goal, assigns a sub-goal to each worker, and receives results when
workers complete their assigned task. The master may use application-specific knowledge
when determining goal partitioning and sub-goal dissemination policies. MW applications
may be task parallel or job parallel.

We define a task parallel application to be a multi-threaded or multi-process application
where one thread or process acts as the master, which is responsible for directing and co-
ordinating the computation. The master partitions the goal computation and sends sub-
goals to worker entities, which perform the required processing and send the results back
to the master via shared-memory or some other inter-process communication mechanism
(network sockets, pipes, etc.). Since the processing capacity available to the application
may change and the complexity of the computation over the sample space may vary, it

*Computer Sciences Department, University of Wisconsin-Madison

1



HicH THROUGHPUT MONTE CARLO 2

is often desirable to allow the application to quantitatively and qualitatively adapt the
worker pool. Additionally, since the goals assigned to workers are typically independent,
the master may be implemented to tolerate worker failures. When the failure of a worker
is detected, the master can reassign that worker’s computation to another.

We define a job parallel application to be an application which obtains parallelism by
submitting many jobs to a batch scheduler. The master creates input files for each worker
and submits each worker as a job. The master detects job completion and collects the
output files. The master may submit many more workers than there are nodes available in
the batch system, relying on the scheduler to manage the queued jobs. If a worker fails,
the master may re-submit that job to the batch scheduler.

While a HTC environment strives to hide the dynamic nature of the environment from
its customers as much as possible, better throughput levels may be obtained by agile
parallel applications that themselves embrace and adapt to changes in the environment.
In particular, the parallel application should adapt to changes in the number of available
resources, the types of available resources, and resource preemptions or failures. For this
reason, we have found the dynamic MW architecture to be a natural fit in the HTMC
framework.

3 Random Number Generation

While Monte Carlo applications are widely regarded as “embarrassingly parallel,” the
degree of application parallelism that affects the quality of results is heavily predicated
on the quality of the random number streams employed by the application. Parallel MC
applications rely heavily on the availability of statistically independent streams of random
numbers to significantly decrease the variance of the calculation.

To facilitate a higher degree of parallelism for MC applications, we are working
to integrate the SPRNG [2] scalable pseudorandom number generation library into our
framework. The SPRNG library provides a portable interface to several high quality
random number generators and strives to minimize correlation between streams. To allow
reproducibility and convenient assignment of random number streams, a global name space
for streams is defined. The master assigns streams by name to specific workers, simplifying
the management and dissemination of unique random streams.

4 High Throughput Computing Services

The accuracy of the results of MC studies and the confidence associated with these results
increases with the amount of computation invested in exploring the problem space. Thus,
scientists and engineers who conduct MC studies have a seemingly infinite appetite for
computing power and are continuously on the lookout for additional computing resources.
A HTC environment harnesses the computing capacity available in pools of networked
resources and conveniently delivers a sustained high level of computing throughput to its
customers.

Large collections of resources experience continuous evolution as system software and
hardware are upgraded or replaced. System failure may also occur in such pools, which
requires some resources to be temporarily withdrawn from the pool while they are repaired.
In addition, older components may be permanently removed from the resource pool. To
provide high throughput over long periods of time, a HTC environment must adapt and
continue to correctly operate in such dynamic environments.

For over a decade, the Condor Team at the University of Wisconsin-Madison has been



HicH THROUGHPUT MONTE CARLO 3

developing and deploying mechanisms and frameworks for HTC [3]. Our work has been
guided by close interactions with groups of HT'C users that include scientists and engineers
from a wide range of disciplines. These users have been using services provided by Condor
to simulate a wide spectrum of phenomena including diesel engines, neural networks, high
energy physics events, computer hardware and software, the behavior of crystals, and
randomized optimization techniques.

The Condor system is in production use at many sites around the world. At the
University of Wisconsin-Madison, Condor currently harnesses the power of more than 600
workstations scattered throughout campus to support the computational needs of real-
life MC applications. The most important lesson our experience has taught us is that in
order to deliver and sustain high throughput over long time intervals, the framework must
build its resource management services on an integrated collection of robust, scalable and
portable mechanisms. Robustness minimizes down time whereas scalability and portability
increases the size of the resource pool a study can draw upon. Typical HT'C environments
are physically distributed and distributively owned, meaning that the control over powerful
computing resources is distributed among many individuals and small groups. The owners
use the owned resource for their daily needs and define the resource’s usage policy for
other customers. Resources in HTC pools may include dedicated workstations as well as
commodity personal computers, leading to large heterogeneous environments. The natural
evolution of the resource pool coupled with the physical and policy heterogeneity lead to
a dynamic environment that requires robust resource management mechanisms. Fragile
mechanisms that depend on the unique characteristics of specific computing platforms are
likely to have a negative rather than a positive impact on the long term throughput of a
MC study.

4.1 Resource Management

An expressive resource management architecture enables the HTMC framework to adapt
to changes in the resource pool. In a dynamic, task parallel master-worker application,
the master may continuously interact with the HTC environment resource management
interface to look for new resources and to learn about the resources currently available.
For example, the master may know that certain phases of the MC computation require a
workstation with a large amount of physical memory while other phases do not. The master
can use this information to request both workstations with large physical memories and
those with small physical memories. When resources are allocated, the master can match
each workstation with a worker which will use it effectively. Similarly, in a job parallel MW
application, the master may specialize each job definition, so some jobs require workstations
with a large amount of physical memory while other jobs don’t.

In Condor, each customer is represented by a customer agent which manages a dynamic
queue of job descriptions and sends resource requests to the matchmaker [4]. One job may
request many resources, as in the case of a task parallel MW application. Each resource
is represented by a resource agent, which implements the policies of the resource owner
and sends resource offers to the matchmaker. The matchmaker is responsible for finding
matches between resource requests and resource offers, and notifying the relevant agents
when a match is found. Upon notification, the customer agent and the resource agent
perform a claiming protocol to initiate the allocation. This architecture is illustrated in
figure 1.

Resource requests and offers contain a description of the request (or offer), a constraint



HicH THROUGHPUT MONTE CARLO 4

Resource

Resource
Owner
Agent

Claiming

Customer
Agent

Protocol

Fic. 1. Condor Resource Management Architecture

which specifies which matches are acceptable, and a rank which acts as a “goodness metric”
that defines preferences among compatible matches. For example, the customer agent
may advertise a resource request which describes itself as a request owned by a particular
user and requires only resources running a specific operating system, with a preference for
resources with larger memories. Similarly, the resource agent may also include a constraint
in the resource offer which specifies if it is available to service a request, and which requests
it will service. For example, in accordance to the resource usage policy defined by the
resource owner, the resource agent may only be willing to service requests made by specific
customers, with a preference for applications with small memory image sizes. An offer
matches a request when both constraints are satisfied.

The matchmaker implements system-wide policies by imposing its own set of constraints
and preferences on matches. For example, the matchmaker implements a customer priority
mechanism by matching resource requests in priority order, so resource requests from
customers with better priorities have a better opportunity to find a match. Although the
allocation is established between the resource and customer agents through the claiming
protocol, the matchmaker may preempt allocations by matching a resource with a new
request to maintain a fair distribution of allocations. The customer agent or the resource
agent may also choose to break the allocation at any time.

This architecture separates the advertising, matchmaking, and claiming protocols. The
agents advertise resource offers and requests asynchronously to the matchmaker, and the
matchmaker notifies the agents when a match is found. Since the matchmaker is not
involved in the claiming protocol, the claiming protocol may be customized for specific
types of agents, and may be modified without effecting the matchmaker, which remains a
neutral and generic service. The matchmaker does not need to know the details of allocation
establishment, and so many different allocation protocols may be easily supported by the
same matchmaker [4].

Two methods are provided for the master of a MW application to interact with the
Condor scheduler. In the case of a task parallel application, the master contacts the
customer agent to modify the job description to add, remove, or alter requests for resources.
The customer agent then notifies the master when resources are allocated or deallocated.
This may be accomplished using the standard PVM interface or via Condor extensions to
the PVM interface for additional expressibility [5]. Thus, many MW applications written
in PVM naturally interface with the Condor scheduler without modification. In the case
of a job parallel application, the master may use standard Condor system commands to



HicH THROUGHPUT MONTE CARLO 5

submit and remove jobs. The Condor scheduler writes a log file of job events, and an API
allows the master to easily process this log for event notification. For example, this method
may be used by the master to determine when a job has completed.

4.2 Resource Discovery

Qualitative resource discovery by the application increases the ability of the master of
a master-worker application to make smart placement decisions when dispatching work to
worker nodes. For example, if the master discovers that a fast machine with a large memory
has become available, it may decide to migrate a long running worker to the newly available
node. Thus, an agile MW application that can discover resources can continuously be on
the lookout for better resources, and thus be supplied with resource information that guides
its goal partitioning and sub-goal dissemination policies.

The matchmaking framework described thus far is also used as the foundation for
resource discovery. The resource offers sent by resource agents include a detailed
representation of the characteristics of the resource such as its physical memory, virtual
memory, performance ratings (KFLOPS and MIPS), architecture, operating system,
current load average, keyboard idle time, etc. Our framework allows applications to
query the matchmaker for available resources, and like resource requests, the query may be
expressed with constraints and ranks defined over arbitrary attributes of resource offers.

4.3 File Management

A HTMC application must have efficient access to its data files. For job parallel master-
worker applications, the file system is the primary communications mechanism between
master and worker. The amount and timing of file I/O varies significantly between MC
applications, which suggests that one file access mechanism will not be the best fit for
all MC applications. We consider four mechanisms for remote data access: I/O system
call redirection, network file systems, application-level network data access, and data file
staging.

To redirect file I/O system calls, we use an interposition agent that injects itself between
the application and the operating system and services file I/O system calls itself [6, 7], as
illustrated in figure 2. This is accomplished by linking the application with an interposition
library. The Condor environment invokes a remote procedure call to perform the file
operation on a server with access to the customer’s data files. Since the file operations
are performed at the system call level, this may result in many high latency operations,
reducing the performance of the application. Read-ahead and write-behind caching can
effectively reduce this latency. Redirecting file I/O system calls has the significant benefit
that it places no file system requirement on the remote workstation. This enables the
Condor environment to utilize a greater number of resources. Additionally, the remote file
access is transparent to the application. Only a re-link with a special library is required.

If all nodes in the cluster share a network file system, Condor may be configured to
allow applications to use the network file system for remote data access. One benefit of
using a network file system is that the application need not be re-linked with a system
call interposition library. This allows Condor to support commercial MC applications and
others which can not be re-linked. File access is also transparent in this scenario. The
availability, reliability, and performance of the network file system depends on the type of
network file system used (NFS, AFS, etc.) and how it is deployed and supported in the
organization. In our experience, network file systems are often optimized for small reads



HicH THROUGHPUT MONTE CARLO 6

Remote Workstation Customer File Server

Application

A
Y

Interposition Agent | > Interposition Server

A
Y

A
Y

OS Syscall Interface OS Syscall Interface

Fic. 2. System Call Interposition

and writes, so performance can be poor for I/O intensive MC applications. Also, since
using a network file system restricts the application to only those workstations which have
access to the network file system, this solution may significantly restrict the computing
resources available for the MC computation.

Remote data access may alternatively be implemented at application-level using
network communication libraries (PVM, MPI, Berkeley sockets, etc.) or database access
libraries. This solution can often be the most efficient, since the data access protocol may be
customized for the application, and it can also be portable to many platforms when using
a portable network communication or database access library. However, this method of
remote data access can cause problems for checkpointing, as described below in section 4.4.

To implement data file staging, the Condor environment requires a list of input files from
the customer for each application. The system then transfers these input files to the local
disk of the remote workstation before running the application. The system is responsible for
gathering up the application’s output files and transferring them to a destination specified
by the customer when the application has completed. This requires free disk space on the
remote workstation and the bandwidth to transfer the data files at the start and end of each
allocation. For large data files, this results in high start-up and tear-down costs compared
to a block file access mechanism provided by a network file system or redirected file I/O
system calls.

Condor scheduling services may also be used to improve data access locality. For
example, data sets may be distributed among nodes in the Condor cluster. Each resource
may advertise the data sets available locally, and each job may require (or prefer) a
resource with the appropriate data sets available locally. This is particularly useful for
MC applications with very large input data files.

4.4 Checkpointing

A long-running dynamic master-worker application must be prepared for worker (and
possibly master) failures. The lost work which results from these failures may significantly
reduce the throughput obtained by the application. To ameliorate this problem, the
application may utilize a mechanism by which partially completed work can be preserved.
Checkpointing provides such a service.

A checkpoint of an executing program is a snapshot of its state which can be used
to restart the program from that state at a later time. Checkpointing provides reliability:



HicH THROUGHPUT MONTE CARLO 7

when a compute node fails, the program running on that node can be restarted from its most
recent checkpoint, either on that same node once it is restored or potentially on another
available node. At the same time, checkpointing also enables preemptive-resume scheduling.
All parties involved in an allocation can break the allocation at any time without losing the
work already accomplished by simply checkpointing the application. Thus, a long running
application can make progress even when allocations last for relatively short periods of
time. Condor provides a fully integrated and robust checkpointing mechanism [8] in the
form of a library that can be linked with the application. Checkpoint servers provide the
storage space needed to store checkpoint files, and the communication overhead of moving
these files to and from the server is considered by the Condor scheduler.

Checkpointing processes which use network communication requires that the state of
the network be checkpointed and restored. Qur checkpointing library has been enhanced to
support applications which use PVM or MPI [9]. To checkpoint the state of the network,
this library synchronizes communicating processes by flushing all communication channels
prior to checkpoint. At restart time, the library restores the communication channels.
However, processes which access the network using other interfaces (for example, Berkeley
sockets) are currently not fully supported by our checkpointing services.

The transparent checkpointing services provided by Condor are effective for most
applications. However, some system calls are not currently supported by Condor’s
checkpointing services, so applications which use these system calls must find an alternative.
Additionally, checkpointing large applications can require significant network and disk
resources, which may be unacceptable in some environments. The Condor scheduler
does not require applications to use the Condor checkpointing services. One alternative
is for an application to provide its own application-level checkpointing. The Condor
scheduler can be configured to trigger application-level checkpointing at preemption time
by sending a specified Unix signal. Application-level checkpointing is often more efficient
than transparent checkpointing, since the application may choose to save only the minimal
state required to resume computation later. A second alternative is to distribute short
pieces of work in the MW application. In this case, when a worker fails or is preempted,
only a short amount of work is lost. The work may be assigned to a new worker in a task
parallel application, and in a job parallel application, the preempted job will be rescheduled
to begin the work again when an available node is located by the Condor scheduler.

5 Experience

Our research has benefitted greatly from the feedback provided by customers who use the
Condor environment for production Monte Carlo runs. This feedback has helped us fine-
tune our framework to better meet the needs of real MC applications. We present here a,
sample of our customers’ experiences.

A group of researchers from the University of Amsterdam has been running its MC
application in six Condor pools located in three different countries and spanning two
continents. Over the last three years they have used more than 160 CPU years to search for
global potential energy minima of a N-particle system consisting of Lennard-Jones particles
on a spherical surface. At any given time, hundreds of workers of the above application
could have been found scattered over the different pools. Some of these workers consumed
more than 100 days of CPU over a lifetime of 4-5 months. In many cases these workers were
left unattended as members of the group were away from their desks attending meetings or
on vacation. The group expected the HTC environment not to lose any of these workers



HicH THROUGHPUT MONTE CARLO 8

before or during their execution phase. Like most other HTC users we have worked with,
they counted on the robustness of the mechanisms used by the environment to successfully
take their workers from submission to completion.

A group of physicists at the INFN (Italian National Institute for Nuclear Physics) has
been using Condor for MC experiments since 1996. They ran a simulation program based
on GEANT 3.21 in Condor pools in Italy and the United States as part of the WA92 event
simulation experiment at CERN (European Laboratory for Particle Physics). It involved
the complete event simulation and reconstruction under various experimental situations in
several channels of physics. The INFN is now constructing a wide-area network Condor
pool for HTMC. This pool will consist of more than one hundred workstations distributed
throughout Italy, including compute sites in Bologna, Rome, Milan, and Naples.

Researchers at the Massachusetts Institute of Technology use Condor to run a simulation
which studies how the dynamic interactions of multiple planets can be important in the
evolution of other planetary systems. They typically run several hundred MC integrations of
possible planetary systems just after they have crossed the stability boundary, all in parallel
on Condor. They then evolve each system until the system reaches a stable configuration,
often requiring millions of (simulated) years. The simulation performs job parallel MC
integrations by assigning slightly different initial conditions to each job. This experiment
thus far has consumed more than 2,500 CPU days in six months. They plan to perform as
many as 10,000 more numerical integrations over the next year on the Condor system.

Scientists at NCSA (National Computational Science Alliance) have been using Condor
to perform large-scale Quantum Monte Carlo (QMC) calculations of electronic structure
of molecular systems. QMC is a method for solving the Schrodinger equation using
stochastic approaches, so that the complicated many-body effects are be described directly
and accurately. The important advantage of QMC is that the calculations can be run very
efficiently in parallel as the communication can be almost completely avoided by appropriate
algorithm modifications. Their calculations have consumed more than 1,300 CPU days in
nine months.

A researcher at the University of Wisconsin Engine Research Center has been using
Condor to model two-phase, turbulent, reacting flows within the combustion chambers of
diesel engines with KIVA [10]. He performs the simulations in multiple phases. First, a
course grained simulation is run to find points of interest. Then, the points of interest
are investigated using a more precise simulation. In a two week period, this researcher
consumed approximately 30 CPU days each day using Condor.

A professor of physics at the University of Wisconsin has been using Condor to study
magnetic order on a 2D “kagome” lattice with MC simulations of different lattice sizes to
extrapolate to the macroscopic limit. This study has a large parameter space and many MC
steps per site are required for statistical significance. The runs are broken into segments for
different machines. The lower limit required for equilibrium behavior is approximately 40
independent runs of 5x10° steps per site (107 total steps) and lattices ranging from 16x16 to
64x64 for each parameter set and eight temperatures near Tc. Due to the volume of data,
the submission command file is generated automatically, as well as the data file averaging
and error analysis. Command line arguments are used in the submission file to eliminate
large numbers of input files.



HicH THROUGHPUT MONTE CARLO 9

6 Conclusion

We have presented the Condor High Throughput Monte Carlo framework and described
how this framework may be effectively used for MC studies. To provide sustained high
throughput over long periods of time, our framework effectively adapts to changes in
large, dynamic collections of computing resources. Many of our customers have found
this framework to be very successful at meeting the needs of their MC applications.

7 Acknowledgements

We are grateful to the scientists mentioned in this paper for providing descriptions of
their Condor experiences and to the developers of SPRNG for sharing their parallel
pseudorandom number generation expertise with us.

References

[1] M. Livny and R. Raman. High-throughput resource management. In I. Foster and
C. Kesselman, editors, The Grid: Blueprint for a New Computing Infrastructure, chapter 13.
Morgan Kaufmann Publishers, Inc., 1998.

[2] M. Mascagni, D. Ceperley, and A. Srinivasan. Sprng: A scalable library for pseudorandom
number generation. In Proceedings of the Third International Conference on Monte Carlo and
Quasi-Monte Carlo Methods in Scientific Computing, June 1998.

[3] M. J. Litzkow and M. Livny. Experience with the condor distributed batch system. IEEFE
Workshop on Experimental Distributed Systems, 1990.

[4] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed resource management for
high throughput computing. In Proceedings of the Seventh IEEE International Symposium on
High Performance Distributed Computing, July 1998.

[5] J. Pruyne and M. Livny. Interfacing condor and pvm to harness the cycles of workstation
clusters. Journal on Future Generations of Computer Systems, 12, 1996.

[6] M. J. Litzkow. Remote unix, turning idle workstations into cycle servers. In Proc. of the 1987
Useniz Summer Conf., pages 381-384, 1987.

[7] M. Jones. Interposition agents: Transparently interposing user code at the system interface.
14th ACM Symposium on Operating Principles, 27(1), December 1993.

[8] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny. Checkpoint and migration of unix
processes in the condor distributed processing system. University of Wisconsin-Madison
Computer Sciences Technical Report 1346, 1997.

[9] J. Pruyne and M. Livny. Managing checkpoints for parallel programs. In Workshop on Job
Scheduling Strategies for Parallel Processing, 1996.

[10] A. Amsden, J. Ramshaw, P. O’'Rourke, and J. Dukowicz. Kiva: A computer program for two-
and three-dimentional fluid flows with chemical reactions and fuel sprays. Los Alamos National
Laboratory Report LLA-10245-MS, February 1985.



