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Abstract*. We investigate the problem arisng in scheduling pardléel
applications that follow a master-worker paradigm in order to maximize both
the resource efficiency and the application performance. We propose a simple
scheduling strategy that dynamically measures application execution time and
uses these measurements to automatically adjust the number of allocated
processors to achieve the desirable efficiency, minimizing the impact in loss of
speedup. The effectiveness of the proposed strategy has been assessed by means
of simulation experiments in which severa scheduling policies were compared.
We have observed that our strategy obtains smilar results to other strategies
that use a priori information about the application, and we have derived a set of
empirica rules that can be used to dynamicaly adjust the number of processors
allocated to the application.

1. Introduction

The use of loosely coupled, powerful and low-cost commodity components (PCs or
workgtations, typicaly) connected by high-speed networks has resulted in the
widespread usage of a technology populaly cdled cluser computing [1]. The
avalability of such clusers made them an appeding vehice for developing pardld
aoplications. However, not dl pardld programs that run efficiently in a traditiond
pardld supercomputing environment can be moved to a cluster environment without
donificant loss of performance. In that sense the Master-Worker paradigm is
dtractive because it can achieve smilar performance in both environments a no high
communication performance is usudly required from the network infrestructure [2).

In this paradigm, a master process is responsible basicaly for digtributing tasks
among a fam of worker processes. Moreover, it is a good example of adgptive
pardld computing because it can respond quite well to a scenario where gpplications
ae executed by deding ide CPU cyces (we refer to these environments as non-
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dedicated clugters). The number of workers can be adapted dynamicaly to the number
of avalable resources in such an opportunistic environment so that, if new resources
appear they areincorporated as new workers for the application.

However, the use of nondedicaed clusters introduces the need for complex
mechanisms such as resource discovery, resource dlocation, process migration and
load bdancing. In the case of mader-worker applications, the overheed incurred in
discovering new resources and dlocating them can be dgnificantly dleviated by not
rdeasing the resource once the task has been completed. The worker will be kept
dive a the resource waiting for a new task. However, by doing s0, an undesrable
scenario may arise in which some workers may be idle while other workers are busy.
This dtuation will result in a poor utilization of the available resources in which all
the dlocated workers are not kept usefully busy and, therefore, the application
efficiency will be low. In this case, the efficiency may be improved by restricting the
number of alocated workers.

If we condder the execution time, a different criteria will guide the dlocation of
workers because the more workers dlocated for the application the lower the total
execution time of the application. Then, the speedup of the gpplication directly
depends on the dlocation of as many workers as possible.

In generd, the execution of a master-worker gpplication implies a tradeoff
between the speedup and the efficiency achieved. On the one hand, our am is to
improve the speedup of the application as new workers are dlocated. On the other
hand, we want to dso achieve a high efficiency by keeping dl the dlocated workers
usefully busy.

Obvioudy, the performance of master-worker applications will depend on the
tempora characterigtics of the taks as wel as on the dynamic dlocation and
scheduling of processors to the application. So, in this work we consder the problem
of maximizing the speedup and the efficiency of a master-worker application through
both the dlocation of the number of processors on which it runs and the scheduling of
tasks to processors during runtime. We address this goad by firs proposing a
generdized  master-worker  framework  which  dlows adaptive and  reidble
management and scheduling of magte-worker agpplications running in a cluster
composed of opportunistic computing resources. Secondly, we propose and evduate
by smulaion a scheduling strategy that dynamicaly measures gpplication efficiency
and task execution times to control the assignment of tasksto workers.

The rest of the paper is organized as follows. Section 2 presents the modd of the
Master-Worker agpplications that we are consgdering in this paper. Section 3 gives a
more precise definition of the scheduling problem, introduces our scheduling policy
and reviews some related work. Section 4 presents some smulation results obtained
in the evauation of the proposed srategy, by comparing our policy with other
scheduling policies. Section 5summarizes the main results presented in this paper.

2. The model for master-worker applications

In this work, we focus on the study of applications that follow a Master-Worker
mode that has been used to solve a sgnificant number of problems such as Monte
Carlo dmulations [ and maerid science smulations [4]. In this generdized master-



worker modd, the master process iteratively solves a batch of tasks. After completion
of one task, the magter process may perform some intermediate computations with the
partid result obtained by the task. Subsequently, when the complete batch of tasks is
finished the master may carry out some additional processing. After that, a new batch
of taks is assgned to the Magter and this process is repested severa times until
completion of the problem, that is, K cydes (which are later referred asiterations).

As can be seen in fig. 1 we are consdeing a group of master-worker applications
with an iterative behavior. In these iterative pardle applicaions a batch of pardld
tasks is executed K times (iterations). Workers execute Function (task) and
PartialResult is collected by the master. The completion of a given batch induces a
synchronization point in the iteration loop which facilitates dso the callection of job's
statisticsin the Master process.

Initialization
Do
Fortask=1to N
PartialResult = + Function (task)
end
act_on_batch_complete( )
while (end condition not met).

Figure 1. A modd for generalized Master-Worker applications.

In addition to these characterigtics, empirica evidence has shown that, for a wide
range of goplications, the execution of each task in successve iterations tends to
behave smilarly, so that the messurements taken for a particular iteraion are good
predictars of near future behavior [4]. In the rest of the paper we will investigate to
what extat an adgptive and dynamic scheduling mechanism may use higoricd data
about the behavior of the master-worker gpplicetion to improve its performance in an
opportunistic environment.

3. Challengesfor scheduling of M aster-Worker applications

In this section we present the scheduling problem adopted in this work and we
present also our proposed palicy to solveit.

3.1 Problem statement and related work

Efficent scheduling of a mager-worker gpplication in a cluster of digtributively
owned resources should provide answers to the following questions:

- How many workers should be alocated to the application? A smple gproach
would congst of dlocating as many workers as taks are generated by the
gpplication a eech iteration. However, this policy will result, in generd, in poor
resource utilizetion because some workes may be idle if they are assigned a
short task w hile other workers may be busy if they are assigned long tasks.

How should tesks be assigned to the workers? When the execution time incurred
by the tasks of a dngle iteration is not the same the tota time incurred in



completing a batch of tasks drongly depends on the order in which tasks are
assigned to workers.

We evduaie our scheduling strategy by messuring the efficiency and the totd
execution time of the application.

Resource efficiency [5] for n workers is defined as the ratio between the amount of
time workers have actudly spent doing useful work and the amount of time workers
were able to perform work, i.e. the time dapsed since worker i is dive until it ends
minus the amount of time that worker i is suspended.

Execution Timeis defined as the time egpsed from when the application begins its
execution until it finishes, usng nworkers

The problem of scheduling master-worker gpplications on cluster environments has
been investigated recently in the framework of middleware environments that alow
the development of adgptive pardld gpplications running on distributed clusters.
They indude NeSolve [6], Nimrod [7] and AppLeS [5]. NetSolve and Nimrod
provide APIs for creating task farms that can only be decomposed by a single bag of
tasks. Therefore, no higoricd data can be used to alocate workers The AppLeS
(ApplicationLeve Scheduling) system focuses on the development of scheduling
agents for pardld gpplicaions but in a caseby-case bass, taking into account the
requirements of the gpplication and the predicted load and availability of the system
resources & scheduling time.

There are other works in the literature tha have sudied the use of pardld
goplication  characteristics by  processor  schedule's  of  multiprogrammed
multiprocessor  systems, typicaly with the god of minimizing average response time
[8]. The results from these studies are not directly applicable in our case because they
were focussed on the dlocation of jobs in shared memory multiprocessors without
consdeing the problem of task scheduling within a fixed number of processors.
However, ther experimenta results aso confirm thet iterative paralel gpplications
usudly exhibit regular behaviorsthat can be used by an adaptive scheduler.

3.2 Proposed scheduling policy

Our adaptive and dynamic stheduling strategy employs a heurigtic-based method
that uses historicd data about the behavior of the application. It dynamicaly collects
datistics about the average execution time of each tak and uses this information to
determine the order in which tasks are assigned to processors. Tasks are sorted in
decreasing order of their average execution time. Then, they are assigned dynamicaly
to workers in a list-scheme, according to that order. At the beginning of the
goplicaion execution, as no dda is avaldle regarding the average execution time of
tasks, tasks & assgned randomly. We cdl this adeptive dtrategy Random & Average,
dthough the random assignment is dore only once, smply as a way to obtan
information about thetasks” executiontime.

4. Experimental study

In this section, we evauate the performance of severd scheduling drategies with



respect to the efficiency and the execution time obtained when they are applied to
schedule master-worker applications on homogeneous systems. As we have dated in
previous sections, we focus our study on a set of applications that are supposed to
exhibit a highly regular and predictable behavior. We will test different scheduling
drategies that include both pure datic drategies tha do not take into account any
runtime information and adaptive and dynamical strategies that try to learn from the
goplication behavior.

As a main result from these smulation experiments, we are interested in obtaining
information about how the proposed adaptive scheduling drategy peforms on
average, and some bounds for the worst case Stuaions. Therefore, in our smulaions
we consder tha the number of processors is avalable through the whole execution of
the gpplication (i.e. thiswould be theided case in which no suspensions occur).

4.1 Policies Description

The set of scheduling strategies used in the comparison were the following:
LPTF (Largest Processing Time First): For each iteration this policy first
assigns the tasks with largest execution time.  Before an iteration begins, tasks
are sorted decreasingly by execution ime.  Then, each time a worker is ready to
receive work, the master sends the next task of the lig, thet is, the task with
largest execution time. It is well known that LPTF is & least ¥ of the optimum
[9]. This policy needs to know the exact execution time of the tasks in advance,
which is not generdly possble in a red stuation, therefore it is only used as a
sort of upper bound in the performance achievable by the other strategies.
LPTF on Expectation: It works in the same way as LPTF, but tasks are initidly
sorted decreasingly by the expected execution time. In each iteration tasks are
assigned in that predefined order. If there is no variaion of the execution time of
the tasks, the behavior of this policy is the same as LPTF. This policy is tatic
and non-adaptive, and represents the case in which the user has an gpproximately
good knowledge of the hehavior of the gpplication and wants to control the
execution of the tasks in the order that he specifies. Obvioudly, it § possble for a
user to have an accurate estimation of the distribution of times between the tasks
of the application, but in practice, smal variaions will affect the overdl
efficiency because the order of assgnment isfixed by the user at the beginning.
Random: For eech itadtion, each time a worker is ready to get work, a random
task is assgned. This drategy represents the case of a pure dynamic method that
does not know anything about the gpplication. In principle, it would obtain the
wors peformance of al the presented drategies, therefore it will be used as a
lower bound in the performance achievable by the other strategies.

4.2. Smulation Framework

All described scheduling policies have been smulaed sysematicaly, to obtain
efficiency and execution time, with al the possble number of workers ranging from 1
to as many workers as numbers of tasks, consdering the following factors:



Workload (W): This represents the work percentage done when executing the
20% largest tasks. We have considered 30%, 40%, 50%, 60%, 78% 80% and
90% workload vdues. A 30% workload would correspond to highly baanced
gpplications in which near dl the tasks exhibit a smilar execution time. On the
contrary, a 90% workload would correspond to applications in which a gmall
number of tasks are responsble for the largest amount of work. Moreover, the
20% largest tasks can have smilar or different execution times. They are smilar
if their execution time differences are not greater than 20%. The same happens to
the other 80% of tasks. For each workload vaue we have undertaken smulaions
with the four possibilities (referred as i-i in figures of section 4.3).
Iterations (L): This represents the number of batches of tasks that are going to be
executed. We have considered the following vaues: 10, 35, 50 and 100.
Variation (D). From the workload factor, we determine the base execution times
for the tasks. Then, for each iteration a variation is gpplied to the base execution
times of esch task. Variations of 0%, 10%, 30%, 60% and 100% have been
consdered. When a 0% variation was used, the times of the task were constant
dong the different iterations. This case would correpond to very regular
applications where tre time of tasks is nearly the same in successve iteraions.
When a 100% vaigtion was used, tasks exhibit sgnificant changes in their
execution time in successive iterations, corresponding to gpplications with highly
irregular behavior.
Number of Tasks (T): We have conddered applications with 30, 100 and 300
tasks. Thus we examine sysems with a smdl, a medium or a large amount of
tasks, respectively.
For eech smulaion scenaio (fixing a catan vdue for workload, iterations and
variation) the efficiency and execution time have been obtained usng dl the workers
from 1to Number of Tasks.

4.3. Simulation Results

Although we have conducted tests for dl the commented vaues, in this section we
present only those results that are the most interesting. We will illustrate with figures
the results for 30 tasks since they prove to be representative enough for the results
obtained with a larger number of tasks. Moreover, we emphasize those results with
30% and 100% devidtion, representing low and high degrees of regularity. In red
goplications 100% deviation is not expected, but it alows us to evauate the drategies
under theworst case scenaria

In the rest of the section some rdevant result figures for both efficiency and
execution time are presented. The X-ads aways contain the number of workers. The
Y-axis contain the efficiency and the execution time vaues respectively. Five vaues
W, 4, D, Tand L appear a the top of each figure W stands for the workload, i-i
describes the smilarity of tasks, D stands for variation applied to task execution time
a each itgdion, T stands for the number of tasks and L for the number of iterations
(loop). We now review the most relevant results obtained from our smulations.

Effect of the number of iterations (L): The number of iterations (L) that tasks are
executed does not dgnificantly affect efficiency for an adaptive drategy such as



Random & Average Fgure 2 shows the effect of varying the number of iteraions,
congdering 30% workload and 100% deviation. This is the case when the effect of
the number of iterations is the most significant. As can be seen when the number of
iteretions vaies from 10 to 35 the gan in eficiency is less than 5%. When the
number of iterations was grester than 35, no dgnificant gan in efficiency was
observed Therefore, our proposed dtrategy achieves a good efficency  without
needing along number of iterationsto acquire a precise knowledge of the gpplication.
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Figure 2. Effect of varying the number of iterations. (a) L=10 (b) L=35

Effect of the workload (W). Figure 3 shows the effect of varying the workload,
condgdering 30% and 60% workload, 0% deviaion and the same execution time for
dl the largest tasks, and for dl the smdlest tasks As expected, for large workloads
the number of workers that can usefully be busy is smdler than for small workloads.
Moreover, when the workload is higher, efficiency declines faster. A large workload
aso implies a smoother curve in efficiency. It is important to point out that in all
cases there is a point from which efficiency continuoudy declines. Before that point,
smal changes in the number of workers may imply sgnificant and contradictory

changesin efficiency.
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Figure 3. Effect of varying the workload (a) W=30% (b) W=60%

Effect of the tasks dzes (i4): The 20% largest tasks determine when the drop of
efficiency begins. If they have the same execution time the decay in efficiency is
ddayed. The 80% smdlest tasks have less influence, they basicdly determine the
smoothness of the efficiency curve. If the 80% smalest tasks have the sane execution
times the efficiency curve have more pesks.



Effect of the variation (D). When devidion is higher, efficiency declines more.
But it is worth noting that it does not decline abruptly even when deviation is 100%.
For dl polides, even for high vadues of deviation (60% or 100%), efficiency was
never worsen more than 10% of the efficiency obtained with 0% deviation.

Findly, Figure 4 illugrates the overdl behavior tha we have obtained for the
execution time when using the different scheduling policies. The execution time is
measured in terms of the reative differences with the execution time of LPTF policy.
As can be see, the Random policy dways exhibits the worst execution time, especidly
when an intermediate number of processors are used. Random & Average and LPTF
on BExpectation achieve an execution time comparable to the execution time of LPTF
even in the presence of ahigh variation in the execution time of thetasks
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Figure 4. Execution time. (a) D=0% (b) D=100%
4.4. Discussion

We now summarize the man results tha have been deived from dl the
smulations.

The number of iterations does not sgnificantly affect either efficiency or execution
time. The behavior of the policies was very smilar for al the number of workers, but
it was srongly affected by the variation of the execution times of the tasks in different
iterations, by the workload and by having sgnificant differences among the execution
times of the 20% largest tasks.

Table 1 shows the efficiency bounds obtaned for the previoudy described
scheduling policies, dways relaive to LPTF policy. The firss column contains the
upper bound that is never surpassed in 95% of cases. The second column shows the
upper bound for al the cases, which aways corresponded to 30% GO0 workload with
D=100%, tha is, tasks without sgnificant execution time differences and with high
vaiance. As can be seen, both LPTF on Expectation and Random & Average in most
cases obtained an efficiency amilar to the efficiency obtained by a policy such as
LPTF that uses pefect information about the application. Even in the worst case
(scenarios in which dl taks have a smilar execution time but a high deviation
(100%)) the loss of efficiency for both strategies was 17% approximately.



Table 1. Worgt efficiency bounds for scheduling policies.

Eff. Bound in 95% of cases Worst Efficiency Bound
Random 25,4 % 26,96 %
Random & Average 8,65 % 16,86 %
LPTF on Expectation 8,91 % 17,29 %

Sightly better results were obtained for execution time. Random & Aveage and
LPTF on BExpectation never performed worse than 4% in more than 95% of the cases.
Only in the presence of high variations were the differences increased to 8%. In 4l
caxs, the execution time of the Random policy was aways between 25% and 30%
wor se than LPTF.

As a consequence of the smulations caried out, we can conclude that a smple
adaptive strategy such as Random & Average will perform very wel in terms of
efficiency and execution time in most cases Even in the presence of highly irregular
gpplications the overdl peformance will not sgnificantly worsen. Similar  results
have been obtained for the LPTF on Expectation policy, but the use of this policy
implies that the user needs a good knowledge of the gpplication. Therefore, Random
& Average appears to be a promising drategy for solving the master-worker
scheduling problem.

From our smulation we have dso deived an empiricd rule to determine the
number of workers that must be dlocated in order to get a good efficiency and a good
execution time. The number of workers depends on the workload factor, on the
differences among the execution times of the 20% largest tasks and on the variation of
the execution times for different iterations. From our smulation results we have
derived empiricd table 2 which shows the number of processors that should be
dlocated, according to our smulations, for obtaining efficency higher than 80% and
execution time lower than 1.1 the time of executing the tasks with as many workers as
tasks. This table gives an empirical vaue for the number of workers that ensures a
smooth decrease in efficiency if more workers are added.

Table 2. Percentage of workerswith respect to the number of tasks.

Workload <30% 3% | 40% | 50% | 60% | 70% | 8% | 9%
Yoworkers (largest tasks Smilar size) Ntask 7% 55% | 45% | 40% | 35% | 3% 25%
Yoworkers (largest tasks diff. Sze) 60%  45% B | 0% | 26 | 20% | 2% | 20%

4.5. Implementation on a Condor pool

T he effectiveness of the Random & Average dsrategy has been tested in ared tet
bed, usng a Condor [10] pool a the University of Wisconsin. Our applications
conssted on a st of synthetic tasks that performed the computation of Fbonacc
sries  The execution of the application was caried out by usng the srvices
provided by MW [11]. In gened, we have obtained efficiency vaues dose to 0.8 and
speedup vaues close to the maximum possible for the gpplication [12].




5. Conclusions

In this paper we have discussed the problem of scheduling master-worker
goplications on dugers of homogeneous machines. We have proposed a scheduling
policy that is both smple and adaptive, and takes into account the measurements
taken during the execution of the tasks of the mager-worker application. Our Strategy
tries to dlocae and schedule the minimum number of processors that guarantee a
good speedup by keeping theprocessors as busy as possible.

We have compared our drategy by smulaion with severd scheduling dtrategies
using a large st of parameters to model different types of master-worker applications.
And we ds0 tested a prdiminay verson of the scheduling strategy on a cluster of
machines, the resources of which were provided by Condor. The preiminary st of
tests with synthetic applications alowed us to vaidate the results obtained in our
smulations and the effectiveness of our scheduling strategy. In generd, our adgptive
scheduling drategy achieved an efficiency in the use of processors close to 80%,
while the speedup of the applications was similar to the speedup achieved with a
higher number of processors.

We will continue this work by first adapting the proposed scheduling strategy to
handle an heterogeneous set of resources. Another extenson will focus on the
incluson of additiond mechanisms that can be used when the distance between
resourcesissignificant.
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