
Evaluation of an Adaptive Scheduling Strategy for
Master-Worker Applications on Clusters of Workstations

Elisa Heymann1, Miquel A. Senar1, Emilio Luque1 and Miron Livny 2

1 Unitat d’Arquitectura d’Ordinadors i Sistemes Operatius
Universitat Autònoma de Barcelona

Barcelona, Spain
{e.heymann, m.a.senar, e.luque}@cc.uab.es

2 Department of Computer Sciences
University of Wisconsin– Madison

Wisconsin, USA

miron@cs.wisc.edu

Abstract*. We investigate the problem arising in scheduling parallel
applications that follow a master-worker paradigm in order to maximize both
the resource efficiency and the application performance. We propose a simple
scheduling strategy that dynamically measures application execution time and
uses these measurements to automatically adjust the number of allocated
processors to achieve the desirable efficiency, minimizing the impact in loss of
speedup. The effectiveness of the proposed strategy has been assessed by means
of simulation experiments in which several scheduling policies were compared.
We have observed that our strategy obtains similar results to other strategies
that use a priori information about the application, and we have derived a set of
empirical rules that can be used to dynamically adjust the numbe r of processors
allocated to the application.

1. Introduction

The use of loosely coupled, powerful and low -cost commodity components (PCs or
workstations, typically) connected by high -speed networks has resulted in the
widespread usage of a technology pop ularly called cluster computing [1]. The
availability of such clusters made them an appealing vehicle for developing parallel
applications. However, not all parallel programs that run efficiently in a traditional
parallel supercomputing environment can be moved to a cluster environment without
significant loss of performance. In that sense, the Master-Worker paradigm is
attractive because it can achieve similar performance in both environments as no high
communication performance is usually required from the network infrastructure [2].

In this paradigm, a master process is responsible basically for distributing tasks
among a farm of worker processes. Moreover, it is a good example of adaptive
parallel computing because it can respond quite well to a scenario where applications
are executed by stealing idle CPU cycles (we refer to these environments as non-

* This work was supported by the CICYT (contract TIC98-0433) and by the Commission for

Cultural, Educational and Scientific Exchange between the USA and Spain (project 99186).

dedicated clusters). The number of workers can be adapted dynamically to the number
of available resources in such an opportunistic environment so that, if new resources
appear they are incorporated as new workers for the application.

However, the use of non-dedicated clusters introduces the need for complex
mechanisms such as resource discovery, resource allocation, process migration and
load balancing. In the case of master-worker applications, the overhead incurred in
discovering new resources and allocating them can be significantly alleviated by not
releasing the resource once the task has been completed. The worker will be kept
alive at the resource waiting for a new task. However, by doing so, an undesirable
scenario may arise in which some workers may be idle while other workers are busy.
This situation will result in a poor utilization of the available resources in which all
the allocated workers are not kept usefully busy and, therefore, the application
efficiency will be low. In this case, the efficiency may be improved by restricting the
number of allocated workers.

If we consider the execution time, a different criteria will guide the allocation of
workers because the more workers allocated for the application the lower the total
execution time of the application. Then, the speedup of the application directly
depends on the allocation of as many workers as possible.

In general, the execution of a master-worker application implies a trade-off
between the speedup and the efficiency achieved. On the one hand, our aim is to
improve the speedup of the application as new workers are allocated. On the other
hand, we want to also achieve a high efficiency by keeping all the allocated workers
usefully busy.

Obviously, the performance of master-worker applications will depend on the
temporal characteristics of the tasks as well as on the dynamic allocation and
scheduling of processors to the application. So, in this work we consider the problem
of maximizing the speedup and the efficiency of a master-worker application through
both the allocation of the number of processors on which it runs and the scheduling of
tasks to processors during runtime. We address this goal by first proposing a
generalized master-worker framework which allows adaptive and reliable
management and scheduling of master-worker applications running in a cluster
composed of opportunistic computing resources. Secondly, we propose and evaluate
by simulation a scheduling strategy that dynamically measures application efficiency
and task execution times to control the assignment of tasks to workers.

The rest of the paper is organized as follows. Section 2 presents the model of the
Master-Worker applications that we are considering in this paper. Section 3 gives a
more precise definition of the scheduling problem, introduces our scheduling policy
and reviews some related work. Section 4 presents some simulation results obtained
in the evaluation of the proposed strategy , by comparing our policy with other
scheduling policies. Section 5 summarizes the main results presented in this paper.

2. The model for master-worker applications

 In this work, we focus on the study of applications that follow a Master-Worker
model that has been used to solve a significant number of problems such as Monte
Carlo simulations [3] and material science simulations [4]. In this generalized master-

worker model, the master process iteratively solves a batch of tasks. After completion
of one task, the master proces s may perform some intermediate computations with the
partial result obtained by the task. Subsequently, when the complete batch of tasks is
finished the master may carry out some additional processing. After that, a new batch
of tasks is assigned to the Master and this process is repeated several times until
completion of the problem, that is, K cycles (which are later referred as iterations).

As can be seen in fig. 1, we are considering a group of master-worker applications
with an iterative behavior. In these iterative parallel applications a batch of parallel
tasks is executed K times (iterations). Workers execute Function (task) and
PartialResult is collected by the master. The completion of a given batch induces a
synchronizat ion point in the iteration loop which facilitates also the collection of job’s
statistics in the Master process.

Figure 1. A model for generalized Master-Worker applications.

In addition to these characteristics, empirical evidence has shown that, for a wide
range of applications, the execution of each task in successive iterations tends to
behave similarly, so that the measurements taken for a particular iteration are good
predictors of near future behavior [4]. In the rest of the paper we will investigate to
what extent an adaptive and dynamic scheduling mechanism may use historical data
about the behavior of the master-worker application to improve its performance in an
opportunistic environment.

3. Challenges for scheduling of Master-Worker applications

In this section we present the scheduling problem adopted in this work and we
present also our proposed policy to solve it.

3. 1 Problem statement and related work

Efficient scheduling of a master-worker application in a cluster of distributively
owned resources should provide answers to the following questions:
• How many workers should be allocated to the application? A simple approach

would consist of allocating as many workers as tasks are generated by the
application at each iteration. However, this policy will result, in general, in poor
resource utilization because some workers may be idle if they are assigned a
short task w hile other workers may be busy if they are assigned long tasks.

• How should tasks be assigned to the workers? When the execution time incurred
by the tasks of a single iteration is not the same, the total time incurred in

Initialization
Do
 For task = 1 to N
 PartialResult = + Function (task)
 end
 act_on_batch_complete()
while (end condition not met).

completing a batch of tasks strongly depends on the order in which tasks are
assigned to workers.

We evaluate our scheduling strategy by measuring the efficiency and the total
execution time of the application.

Resource efficiency [5] for n workers is defined as the ratio between the amount of
time workers have actually spent doing useful work and the amount of time workers
were able to perform work, i.e. the time elapsed since worker i is alive until it ends
minus the amount of time that worker i is suspended.

Execution Time is defined as the time elapsed from when the application begins its
execution until it finishes, using n workers.

The problem of scheduling master-worker applications on cluster environments has
been investigated recently in the framework of middleware environments that allow
the development of adaptive parallel applications running on distributed clusters.
They include NetSolve [6], Nimrod [7] and AppLeS [5]. NetSolve and Nimrod
provide APIs for creating task farms that can only be decomposed by a single bag of
tasks. Therefore, no historical data can be used to allocate workers. The AppLeS
(Application-Level Scheduling) system focuses on the development of scheduling
agents for parallel applications but in a case-by-case basis, taking into account the
requirements of the application and the predicted load and availability of the system
resources at scheduling time.

There are other works in the literature that have studied the use of parallel
application characteristics by processor schedulers of multiprogrammed
multiprocessor systems, typically with the goal of minimizing average response time
[8]. The results from these studies are not directly applicable in our case because they
were focussed on the allocation of jobs in shared memory multiprocessors without
considering the problem of task scheduling within a fixed number of processors.
However, their experimental results also confirm that iterative parallel applications
usually exhibit regular behaviors that can be used by an adaptive scheduler.

3. 2 Proposed scheduling policy

Our adaptive and dynamic scheduling strategy employs a heuristic-based method
that uses historical data about the behavior of the application. It dynamically collects
statistics about the average execution time of each task and uses this information to
determine the order in which tasks are assigned to processors. Tasks are sorted in
decreasing order of their average execution time. Then, they are assigned dynamically
to workers in a list-scheme, according to that order. At the beginning of the
application execution, as no data is available regarding the average execution time of
tasks, tasks are assigned randomly. We call this adaptive strategy Random & Average,
although the random assignment is done only once, simply as a way to obtain
information about the tasks’ execution time.

4. Experimental study

In this section, we evaluate the performance of several scheduling strategies with

respect to the efficiency and the execution time obtained when they are applied to
schedule master-worker applications on homogeneous systems. As we have stated in
previous sections, we focus our study on a set of applications that are supposed to
exhibit a highly regular and predictable behavior. We will test different scheduling
strategies that include both pure static strategies that do not take into account any
runtime information and adaptive and dynamical strategies that try to learn from the
application behavior.

As a main result from these simulation experiments, we are interested in obtaining
information about how the proposed adaptive scheduling strategy performs on
average, and some bounds for the worst case situations. Therefore, in our simulations
we consider that the number of processors is available through the whole execution of
the application (i.e. this would be the ideal case in which no suspensions occur).

4.1 Policies Description

The set of scheduling strategies used in the comparison were the following:
• LPTF (Largest Processing Time First): For each iteration this policy first

assigns the tasks with largest execution time. Before an iteration begins, tasks
are sorted decreasingly by execution time. Then, each time a worker is ready to
receive work, the master sends the next task of the list, that is, the task with
largest execution time. It is well known that LPTF is at least ¾ of the optimum
[9]. This policy needs to know the exact execution time of the tasks in advance,
which is not generally possible in a real situation, therefore it is only used as a
sort of upper bound in the performance achievable by the other strategies.

• LPTF on Expectation: It works in the same way as LPTF, but tasks are initially
sorted decreasingly by the expected execution time. In each iteration tasks are
assigned in that predefined order. If there is no variation of the execution time of
the tasks, the behavior of this policy is the same as LPTF. This policy is static
and non-adaptive, and represents the case in which the user has an approximately
good knowledge of the behavior of the application and wants to control the
execution of the tasks in the order that he specifies. Obviously, it is possible for a
user to have an accurate estimation of the distribution of times between the tasks
of the application, but in practice, small variations will affect the overall
efficiency because the order of assignment is fixed by the user at the beginning.

• Random: For each iteration, each time a worker is ready to get work, a random
task is assigned. This strategy represents the case of a pure dynamic method that
does not know anything about the application. In principle, it would obtain the
worst performance of all the present ed strategies, therefore it will be used as a
lower bound in the performance achievable by the other strategies.

4.2. Simulation Framework

All described scheduling policies have been simulated systematically, to obtain
efficiency and execution time, with all the possible number of workers ranging from 1
to as many workers as numbers of tasks, considering the following factors:

• Workload (W): This represents the work percentage done when executing the
20% largest tasks. We have considered 30%, 40%, 50%, 60%, 78% 80% and
90% workload values. A 30% workload would correspond to highly balanced
applications in which near all the tasks exhibit a similar execution time. On the
contrary, a 90% workload would correspond to applications in which a small
number of tasks are responsible for the largest amount of work. Moreover, the
20% largest tasks can have similar or different execution times. They are similar
if their execution time differences are not greater than 20%. The same happens to
the other 80% of tasks. For each workload value we have undertaken simulations
with the four possibilities (referred as i-i in figures of section 4.3).

• Iterations (L): This represents the number of batches of tasks that are going to be
executed. We have considered the following values: 10, 35, 50 and 100.

• Variation (D): From the workload factor, we determine the base execution times
for the tasks. Then, for each iteration a variation is applied to the base execution
times of each task. Variations of 0%, 10%, 30%, 60% and 100% have been
considered. When a 0% variation was used, the times of the task were constant
along the different iterations. This case would correspond to very regular
applications where the time of tasks is nearly the same in successive iterations.
When a 100% variation was used, tasks exhibit significant changes in their
execution time in successive iterations, corresponding to applications with highly
irregular behavior.

• Number of Tasks (T): We have considered applications with 30, 100 and 300
tasks. Thus we examine systems with a small, a medium or a large amount of
tasks, respectively.

For each simulation scenario (fixing a certain value for workload, iterations and
variation) the efficiency and execution time have been obtained using all the workers
from 1 to Number of Tasks.

4.3. Simulation Results

Although we have conducted tests for all the commented values, in this section we
present only those results that are the most interesting. We will illustrate with figures
the results for 30 tasks since they prove to be representative enough for the results
obtained with a larger number of tasks. Moreover, we emphasize those results with
30% and 100% deviation, representing low and high degrees of regularity. In real
applications 100% deviation is not expected, but it allows us to evaluate the strategies
under the worst case scenario.

In the rest of the section some relevant result figures for both efficiency and
execution time are presented. The X-axis always contain the number of workers. The
Y-axis contain the efficiency and the execution time values respectively. Five values
W, i-i, D, T and L appear at the top of each figure. W stands for the workload, i-i
describes the similarity of tasks, D stands for variation applied to task execution time
at each iteration, T stands for the number of tasks and L for the number of iterations
(loop). We now review the most relevant results obtained from our simulations.
Effect of the number of iterations (L): The number of iterations (L) that tasks are
executed does not significantly affect efficiency for an adaptive strategy such as

Random & Average. Figure 2 shows the effect of varying the number of iterations,
considering 30% workload and 100% deviation. This is the case when the effect of
the number of iterations is the most significant. As can be seen when the number of
iterations varies from 10 to 35 the gain in efficiency is less than 5%. When the
number of iterations was greater than 35, no significant gain in efficiency was
observed. Therefore, our proposed strategy achieves a good efficiency without
needing a long number of iterations to acquire a precise knowledge of the application.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

E
ff

ic
ie

n
cy

Machines

EFFICIENCY. 30% 1-1 D=100% T=30 L=10

LPTF
Random

LPTF on ExpRand & Avg

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

E
ff

ic
ie

n
cy

Machines

EFFICIENCY. 30% 1-1 D=100% T=30 L=35

LPTF
Random

LPTF on ExpRand & Avg

Figure 2. Effect of varying the number of iterations. (a) L=10 (b) L=35

Effect of the workload (W): Figure 3 shows the effect of varying the workload,
considering 30% and 60% workload, 0% deviation and the same execution time for
all the largest tasks, and for all the smallest tasks. As expected, for large workloads
the number of workers that can usefully be busy is smaller than for small workloads.
Moreover, when the workload is higher, efficiency declines faster. A large workload
also implies a smoother curve in efficiency. It is important to point out that in all
cases there is a point from which efficiency continuously declines. Before that point,
small changes in the number of workers may imply significant and contradictory
changes in efficiency.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

E
ff

ic
ie

n
cy

Machines

EFFICIENCY. 30% 0-0 D=0% T=30 L=35

LPTF
Random

LPTF on ExpRand & Avg

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

E
ff

ic
ie

n
cy

Machines

EFFICIENCY. 60% 0-0 D=0% T=30 L=35

LPTF
Random

LPTF on ExpRand & Avg

Figure 3. Effect of varying the workload. (a) W=30% (b) W=60%

Effect of the tasks sizes (i-i): The 20% largest tasks determine when the drop of
efficiency begins. If they have the same execution time the decay in efficiency is
delayed. The 80% smallest tasks have less influence, they basically determine the
smoothness of the efficiency curve. If the 80% smallest tasks have the same execution
times the efficiency curve have more peaks.

Effect of the variation (D): When deviation is higher, efficiency declines more.
But it is worth noting that it does not decline abruptly even when deviation is 100%.
For all policies , even for high values of deviation (60% or 100%), efficiency was
never worsen more than 10% of the efficiency obtained with 0% deviation.

Finally, Figure 4 illustrates the overall behavior that we have obtained for the
execution time when using the different scheduling policies. The execution time is
measured in terms of the relative differences with the execution time of LPTF policy.
As can be see, the Random policy always exhibits the worst execution time, especially
when an intermediate number of processors are used. Random & Average and LPTF
on Expectation achieve an execution time comparable to the execution time of LPTF
even in the presence of a high variation in the execution time of the tasks.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

E
xe

cu
ti

o
n

 T
im

e

Machines

EXEC TIME. 30% 1-1 D=0% T=30 L=35

Random
LPTF on Exp
Rand & Avg

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

E
xe

cu
ti

o
n

 T
im

e

Machines

EXEC TIME. 30% 1-1 D=100% T=30 L=35

Random
LPTF on Exp
Rand & Avg

Figure 4. Execution time. (a) D=0% (b) D=100%

4.4. Discussion

We now summarize the main results that have been derived from all the
simulations.

The number of iterations does not significantly affect either efficiency or execution
time. The behavior of the policies was very similar for all the number of workers, but
it was strongly affected by the variation of the execution times of the tasks in different
iterations, by the workload and by having significant differences among the execution
times of the 20% largest tasks.

Table 1 shows the efficiency bounds obtained for the previously described
scheduling policies, always relative to LPTF policy. The first column contains the
upper bound that is never surpassed in 95% of cases. The second column shows the
upper bound for all the cases, which always corresponded to 30% 0-0 workload with
D=100%, that is, tasks without significant execution time differences and with high
variance. As can be seen, both LPTF on Expectation and Random & Average in most
cases obtained an efficiency similar to the efficiency obtained by a policy such as
LPTF that uses perfect information about the application. Even in the worst case
(scenarios in which all tasks have a similar execution time but a high deviation
(100%)) the loss of efficiency for both strategies was 17% approximately.

Table 1. Worst efficiency bounds for scheduling policies.

 Eff. Bound in 95% of cases Worst Efficiency Bound
Random 25,4 % 26,96 %

Random & Average 8,65 % 16,86 %
LPTF on Expectation 8,91 % 17,29 %

Slightly better results were obtained for execution time. Random & Average and
LPTF on Expectation never performed worse than 4% in more than 95% of the cases.
Only in the presence of high variations were the differences increased to 8%. In all
cases, the execution time of the Random policy was always between 25% and 30%
worse than LPTF.

As a consequence of the simulations carried out, we can conclude that a simple
adaptive strategy such as Random & Average will perform very well in terms of
efficiency and execution time in most cases. Even in the presence of highly irregular
applications the overall performance will not significantly worsen. Similar results
have been obtained for the LPTF on Expectation policy, but the use of this policy
implies that the user needs a good knowledge of the application. Therefore, Random
& Average appears to be a promising strategy for solving the master-worker
scheduling problem.

From our simulation we have also derived an empirical rule to determine the
number of workers that must be allocated in order to get a good efficiency and a good
execution time. The number of workers depends on the workload factor, on the
differences among the execution times of the 20% largest tasks and on the variation of
the execution times for different iterations. From our simulation results we have
derived empirical table 2 which shows the number of processors that should be
allocated, according to our simulations, for obtaining efficiency higher than 80% and
execution time lower than 1.1 the time of executing the tasks with as many workers as
tasks. This table gives an empirical value for the number of workers that ensures a
smooth decrease in efficiency if more workers are added.

Table 2. Percentage of workers with respect to the number of tasks.
Workload <30% 30% 40% 50% 60% 70% 80% 90%
%workers (largest tasks similar size) Ntask 70% 55% 45% 40% 35% 30% 25%
%workers (largest tasks diff. size) 60% 45% 35% 30% 25% 20% 20% 20%

4.5. Implementation on a Condor pool

T he effectiveness of the Random & Average strategy has been tested in a real test
bed, using a Condor [10] pool at the University of Wisconsin. Our applications
consisted on a set of synthetic tasks that performed the computation of Fibonacci
series. The execution of the application was carried out by using the services
provided by MW [11]. In general, we have obtained efficiency values close to 0.8 and
speedup values close to the maximum possible for the application [12].

5. Conclusions

In this paper we have discussed the problem of scheduling master-worker
applications on clusters of homogeneous machines. We have proposed a scheduling
policy that is both simple and adaptive, and takes into account the measurements
taken during the execution of the tasks of the master-worker application. Our strategy
tries to allocate and schedule the minimum number of processors that guarantee a
good speedup by keeping the processors as busy as possible.

We have compared our strategy by simulation with several scheduling strategies
using a large set of parameters to model different types of master-worker applications.
And we also tested a preliminary version of the scheduling strategy on a cluster of
machines, the resources of which were provided by Condor. The preliminary set of
tests with synthetic applications allowed us to validate the results obtained in our
simulations and the effectiveness of our scheduling strategy. In general, our adaptive
scheduling strategy achieved an efficiency in the use of processors close to 80%,
while the speedup of the applications was similar to the speedup achieved with a
higher number of processors.

We will continue this work by first adapting the proposed scheduling strategy to
handle an heterogeneous set of resources. Another extension will focus on the
inclusion of additional mechanisms that can be used when the distance between
resources is significant.

6. References

1. R. Buyya (ed.), “High Performance Cluster Computing: Architectures and Systems”,
Volume 1, Prentice Hall PTR, NJ, USA, 1999.

2. L. M. Silva and R. Buyya, “Parallel programming models and paradigms”, in R. Buyya
(ed.), “High Performance Cluster Computing: Architectures and Systems: Volume 2”,
Prentice Hall PTR, NJ, USA, 1999.

3. J. Basney, B. Raman and M. Livny, “High throughput Monte Carlo”, Proc. of the Ninth
SIAM Conf. on Parallel Processing for Scientific Computing, San Antonio Texas, 1999.

4. J. Pruyne and M. Livny, “Interfacing Condor and PVM to harness the cycles of
workstation clusters”, Journal on Future Generations of Computer Systems, Vol. 12, 1996.

5. G. Shao, R. Wolski and F. Berman, “Performance effects of scheduling strategies for
Master/Slave distributed applications”, TR-CS98-598, U. of California, San Diego, 1998.

6. H. Casanova, M. Kim, J. S. Plank and J. Dongarra, “Adaptive scheduling for task farming
with Grid middleware”, International Journal of Supercomputer Applications and High-
Performance Computing, pp. 231-240, Volume 13, Number 3, Fall 1999.

7. D. Abramson, R. Sosic, J. Giddy and B. Hall, “Nimrod: a tool for performing
parameterised simulations using distributed workstations”, Symposium on High
Performance Distributed Computing, Virginia, August, 1995.

8. T. B. Brecht and K. Guha, “Using parallel program characteristics in dynamic processor
allocation policies”, Performance Evaluation, Vol. 27 and 28, pp. 519-539, 1996.

9. L. A. Hall, “Aproximation algorithms for scheduling”, in Dorit S. Hochbaum (ed.),
“Approximation algorithms for NP-hard problems”, PWS Publishing Company, 1997.

10. M. Livny, J. Basney, R. Raman and T. Tannenbaum, “Mechanisms for high throughput
computing”, SPEEDUP, 11, 1997.

11. J.-P. Goux, S. Kulkarni, J. Linderoth, M. Yoder, “An enabling framework for master-
worker applications on the computational grid”, Tech. Rep, U. of Wisc. – Madison, 2000.

12. E. Heymann, M. Senar, E. Luque, M. Livny. “Adaptive Scheduling for Master-Worker
Applications on the Computational Grid”. Proceedings of the First International Workshop
on Grid Computing (GRID 2000). (to appear)

